Path-based similarity with instance-level constraints for SemiBoost

被引:0
|
作者
Zhang, Xiangrong [1 ]
Yu, Jianshen [1 ]
Wang, Ting [1 ]
Hou, Biao [1 ]
Jiao, L. C. [1 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
关键词
SemiBoost; path-based similarity; pairwise constraints; SAR-ATR;
D O I
10.1117/12.2031773
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel classification method path-based similarity with instance-level constrains for SemiBoost, PBS-SB in short is proposed, and we exploit it for synthetic aperture radar automatic target recognition (SAR-ATR). Different from traditional SemiBoost method that uses the Gaussian kernel similarity, PBS-SB utilizes the path-based similarity, which considers the global consistence of data clusters. Besides, the instance-level constraints are integrated into the similarity measurement to construct the semi-supervised similarity, which provides the local consistence information. The experiments on 5 different data sets and MSTAR (Moving and Stationary Target Acquisition and Recognition) database demonstrate that the proposed method has superior classification performance with respect to competitive methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Understanding Instance-Level Impact of Fairness Constraints
    Wang, Jialu
    Wang, Xin Eric
    Liu, Yang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [2] Mixture modeling with pairwise, instance-level class constraints
    Zhao, Q
    Miller, DJ
    NEURAL COMPUTATION, 2005, 17 (11) : 2482 - 2507
  • [3] CEVCLUS: evidential clustering with instance-level constraints for relational data
    V. Antoine
    B. Quost
    M.-H. Masson
    T. Denoeux
    Soft Computing, 2014, 18 : 1321 - 1335
  • [4] Expert-driven trace clustering with instance-level constraints
    De Koninck, Pieter
    Nelissen, Klaas
    vanden Broucke, Seppe
    Baesens, Bart
    Snoeck, Monique
    De Weerdt, Jochen
    KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (05) : 1197 - 1220
  • [5] Semi-supervised Discriminant Analyze with Instance-Level Constraints
    Gong, Yun-Chao
    Chen, Chuanliana
    Shen, Min
    Fu, Zengmei
    HPCC 2008: 10TH IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, PROCEEDINGS, 2008, : 801 - +
  • [6] Fuzzy Clustering and Aggregation of Relational Data With Instance-Level Constraints
    Frigui, Hichem
    Hwang, Cheul
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (06) : 1565 - 1581
  • [7] Expert-driven trace clustering with instance-level constraints
    Pieter De Koninck
    Klaas Nelissen
    Seppe vanden Broucke
    Bart Baesens
    Monique Snoeck
    Jochen De Weerdt
    Knowledge and Information Systems, 2021, 63 : 1197 - 1220
  • [8] CEVCLUS: evidential clustering with instance-level constraints for relational data
    Antoine, V.
    Quost, B.
    Masson, M. -H.
    Denoeux, T.
    SOFT COMPUTING, 2014, 18 (07) : 1321 - 1335
  • [9] Probabilistic and Graphical Model Based Genetic Algorithm Driven Clustering with Instance-level Constraints
    Hong, Yi
    Kwong, Sam
    Wang, Hanli
    Ren, Qingsheng
    Chang, Yuchou
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 322 - +
  • [10] Semi-supervised clustering and feature discrimination with instance-level constraints
    Frigui, Hichem
    Mahdi, Rami
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1720 - 1725