Modeling hybrid network dynamics under random perturbations

被引:3
|
作者
Korzeniowski, Andrzej [2 ]
Ladde, G. S. [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
Single node dynamics; Random networks; Stability; Reliability;
D O I
10.1016/j.nahs.2008.12.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define stochastic network models based on internal structural dynamics of individual nodes which undergo Markovian switching subject to noise and external shocks. Steady-state stability and reliability criteria are established in closed form and show explicit dependence on system parameters. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 50 条
  • [21] Random perturbations and lattice effects in chaotic population dynamics
    Domokos, G
    Scheuring, I
    SCIENCE, 2002, 297 (5590)
  • [22] Hierarchy measurement for modeling network dynamics under directed attacks
    Rubinson, M.
    Levit-Binnun, N.
    Peled, A.
    Naim-Feil, J.
    Freche, D.
    Moses, E.
    PHYSICAL REVIEW E, 2017, 96 (05)
  • [23] Dynamics on Hybrid Complex Network: Botnet Modeling and Analysis of Medical IoT
    Yin, Mingyong
    Chen, Xingshu
    Wang, Qixu
    Wang, Wei
    Wang, Yulong
    SECURITY AND COMMUNICATION NETWORKS, 2019, 2019
  • [24] On Numerical Modeling of the Multidimensional Dynamic Systems under Random Perturbations with the 1.5 and 2.0 Orders of Strong Convergence
    D. F. Kuznetsov
    Automation and Remote Control, 2018, 79 : 1240 - 1254
  • [25] On Numerical Modeling of the Multidimensional Dynamic Systems under Random Perturbations with the 1.5 and 2.0 Orders of Strong Convergence
    Kuznetsov, D. F.
    AUTOMATION AND REMOTE CONTROL, 2018, 79 (07) : 1240 - 1254
  • [26] A Siegel theorem for dynamical systems under random perturbations
    Li, Weigu
    Lu, Kening
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 9 (3-4): : 635 - 642
  • [27] Stability of nondissipative systems under persistent random perturbations
    Kalyakin, L. A.
    MATHEMATICAL NOTES, 2012, 92 (1-2) : 136 - 139
  • [28] Exponential stability of the quasigeostrophic equation under random perturbations
    Duan, JQ
    Kloeden, PE
    Schmalfuss, B
    STOCHASTIC CLIMATE MODELS, 2001, 49 : 241 - 256
  • [29] MONOTONE CONTROL OF A DAMPED OSCILLATOR UNDER RANDOM PERTURBATIONS
    SUN, M
    MENALDI, JL
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1988, 5 (03) : 169 - 186
  • [30] Fidelity under isospectral perturbations: a random matrix study
    Leyvraz, F.
    Garcia, A.
    Kohler, H.
    Seligman, T. H.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)