Modeling hybrid network dynamics under random perturbations

被引:3
|
作者
Korzeniowski, Andrzej [2 ]
Ladde, G. S. [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
关键词
Single node dynamics; Random networks; Stability; Reliability;
D O I
10.1016/j.nahs.2008.12.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define stochastic network models based on internal structural dynamics of individual nodes which undergo Markovian switching subject to noise and external shocks. Steady-state stability and reliability criteria are established in closed form and show explicit dependence on system parameters. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 50 条
  • [1] DYNAMICS OF SOLITONS UNDER RANDOM PERTURBATIONS
    BASS, FG
    KIVSHAR, YS
    KONOTOP, VV
    SINITSYN, YA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 157 (02): : 63 - 181
  • [2] DYNAMICS OF A SIMPLEST MODEL OF A WHEELED VEHICLE UNDER RANDOM PERTURBATIONS
    MUSARSKII, RA
    FUFAEV, NA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1976, 40 (05): : 759 - 764
  • [3] On the replicator dynamics behavior under Stratonovich type random perturbations
    Khasminskii, R.
    Potsepun, N.
    STOCHASTICS AND DYNAMICS, 2006, 6 (02) : 197 - 211
  • [4] Nonlinear network dynamics under perturbations of the underlying graph
    Radulescu, Anca
    Verduzco-Flores, Sergio
    CHAOS, 2015, 25 (01)
  • [5] Random perturbations of hyperbolic dynamics
    Dorsch, Florian
    Schulz-Baldes, Hermann
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [6] MODELING OF THE DYNAMICS OF A LIQUID CRYSTAL UNDER THE ACTION OF WEAK PERTURBATIONS
    V. M. Sadovskii
    O. V. Sadovskaya
    I. V. Smolekho
    Journal of Applied Mechanics and Technical Physics, 2021, 62 : 170 - 182
  • [7] MODELING OF THE DYNAMICS OF A LIQUID CRYSTAL UNDER THE ACTION OF WEAK PERTURBATIONS
    Sadovskii, V. M.
    Sadovskaya, O. V.
    Smolekho, I. V.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2021, 62 (01) : 170 - 182
  • [8] Cyclic population dynamics and random perturbations
    Kaitala, V
    Ranta, E
    Lindstrom, J
    JOURNAL OF ANIMAL ECOLOGY, 1996, 65 (02) : 249 - 251
  • [9] OPTIMAL CONTROL UNDER RANDOM PERTURBATIONS
    ESKIN, VI
    AUTOMATION AND REMOTE CONTROL, 1967, (09) : 1260 - &
  • [10] Stochastic Modeling of Multistate Disease Dynamics under Random Environments
    Manoharan, M.
    Xavier, T. D.
    2016 SECOND INTERNATIONAL SYMPOSIUM ON STOCHASTIC MODELS IN RELIABILITY ENGINEERING, LIFE SCIENCE AND OPERATIONS MANAGEMENT (SMRLO), 2016, : 393 - 402