Nonadiabatic Coherent Evolution of Two-Level Systems under Spontaneous Decay

被引:39
|
作者
Prado, F. O. [1 ]
Duzzioni, E. I. [2 ]
Moussa, M. H. Y. [3 ]
de Almeida, N. G. [4 ]
Villas-Boas, C. J. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Paulo, Brazil
[2] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Sao Paulo, Brazil
[3] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Paulo, Brazil
[4] Univ Catolica Goias, BR-74605220 Goiania, Go, Brazil
基金
巴西圣保罗研究基金会;
关键词
GEOMETRIC PHASE; QUANTUM; DECOHERENCE; CODES; ATOMS;
D O I
10.1103/PhysRevLett.102.073008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we extend current perspectives in engineering reservoirs by producing a time-dependent master equation leading to a nonstationary superposition equilibrium state that can be nonadiabatically controlled by the system-reservoir parameters. Working with an ion trapped inside a nonideal cavity, we first engineer effective interactions, which allow us to achieve two classes of decoherence-free evolution of superpositions of the ground and excited ionic levels: those with a time-dependent azimuthal or polar angle. As an application, we generalize the purpose of an earlier study [Phys. Rev. Lett. 96, 150403 (2006)], showing how to observe the geometric phases acquired by the protected nonstationary states even under nonadiabatic evolution.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Observation of directly interacting coherent two-level systems in an amorphous material
    Jürgen Lisenfeld
    Grigorij J. Grabovskij
    Clemens Müller
    Jared H. Cole
    Georg Weiss
    Alexey V. Ustinov
    Nature Communications, 6
  • [22] Fidelity decay in interacting two-level boson systems: Freezing and revivals
    Benet, Luis
    Hernandez-Quiroz, Saul
    Seligman, Thomas H.
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [23] Dephasing by two-level systems at zero temperature by unitary evolution
    Frasca, M
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 15 (04): : 252 - 260
  • [24] Time evolution of two-level systems driven by periodic fields
    Barata, JCA
    Cortez, DA
    PHYSICS LETTERS A, 2002, 301 (5-6) : 350 - 360
  • [25] Nonadiabatic dynamics of a slowly driven dissipative two-level system
    Xu, Canran
    Poudel, Amrit
    Vavilov, Maxim G.
    PHYSICAL REVIEW A, 2014, 89 (05):
  • [26] Nonadiabatic geometric phase in a doubly driven two-level system
    Liu, Weixin
    Wang, Tao
    Li, Weidong
    CHINESE PHYSICS B, 2023, 32 (05)
  • [27] Nonadiabatic geometric phase in a doubly driven two-level system
    刘伟新
    汪涛
    李卫东
    ChinesePhysicsB, 2023, 32 (05) : 363 - 369
  • [28] NONADIABATIC EXCITATION OF DEGENERATE TWO-LEVEL SYSTEMS BY LASER RADIATION WITH A CONTINUOUSLY VARIABLE FREQUENCY.
    Likhanskii, V.V.
    Soviet journal of quantum electronics, 1981, 8 (08): : 1119 - 1120
  • [29] COHERENT RADIATION IN INTERACTION WITH TWO-LEVEL SYSTEM
    FAIST, A
    GENEUX, E
    MEYSTRE, P
    QUATTROP.A
    HELVETICA PHYSICA ACTA, 1972, 45 (06): : 956 - 959
  • [30] Coherent radiation by two-level quantum systems with permanent dipole moments under multiphoton resonant laser excitation
    Avetissian, H. K.
    Avchyan, B. R.
    Mkrtchian, G. F.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (02)