Scaling exponent for incremental records

被引:11
|
作者
Miller, P. W. [1 ,2 ,3 ]
Ben-Naim, E. [2 ,3 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87544 USA
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2013年
基金
美国能源部;
关键词
exact results; persistence (theory); large deviations in non-equilibrium systems; STATISTICS; FREQUENCY;
D O I
10.1088/1742-5468/2013/10/P10025
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate records in a growing sequence of identical and independently distributed random variables. The record equals the largest value in the sequence, and our focus is on the increment, defined as the difference between two successive records. We investigate sequences in which all increments decrease monotonically, and analyze the case where the random variables are drawn from a uniform distribution with compact support. We find that the fraction I-N of sequences that exhibit this property decays algebraically with sequence length N, namely I-N similar to N-v as N -> infinity, and obtain the exponent v = 0.317621 ... using analytic methods. We also study the record distribution and the increment distribution. Whereas the former is a narrow distribution with an exponential tail, the latter is broad and has a power-law tail characterized by the exponent v. Empirical analysis of records in the sequence of waiting times between successive earthquakes is consistent with the theoretical results.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Scaling Exponent of List Decoders with Applications to Polar Codes
    Mondelli, Marco
    Hassani, S. Hamed
    Urbanke, Ruediger
    2013 IEEE INFORMATION THEORY WORKSHOP (ITW), 2013,
  • [22] Sub-4.7 Scaling Exponent of Polar Codes
    Wang, Hsin-Po
    Lin, Ting-Chun
    Vardy, Alexander
    Gabrys, Ryan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4235 - 4254
  • [23] Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent
    Tian, Di
    Yan, Zhengbing
    Niklas, Karl J.
    Han, Wenxuan
    Kattge, Jens
    Reich, Peter B.
    Luo, Yongkai
    Chen, Yahan
    Tang, Zhiyao
    Hu, Huifeng
    Wright, Ian J.
    Schmid, Bernhard
    Fang, Jingyun
    NATIONAL SCIENCE REVIEW, 2018, 5 (05) : 728 - 739
  • [24] Profile and scaling of the fractal exponent of percolations in complex networks
    Hasegawa, T.
    Nogawa, T.
    Nemoto, K.
    EPL, 2013, 104 (01)
  • [25] Scaling Exponent of List Decoders With Applications to Polar Codes
    Mondelli, Marco
    Hassani, S. Hamed
    Urbanke, Rudiger L.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (09) : 4838 - 4851
  • [26] Nonlinear analysis of anesthesia dynamics by fractal scaling exponent
    Gifani, P.
    Rabiee, H. R.
    Hashemi, M. R.
    Taslimi, P.
    Ghanbari, M.
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 4663 - +
  • [27] Observation of nonuniversal scaling exponent in a novel erosion model
    Nath, Palash
    Jana, Debnarayan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (10):
  • [28] Properties of quantum walks from the asymptotic scaling exponent
    Domino, Krzysztof
    Glos, Adam
    Ostaszewski, Mateusz
    Pawela, Lukasz
    Sadowski, Przemyslaw
    Quantum Information and Computation, 2018, 18 (3-4): : 181 - 197
  • [29] THE DYNAMIC SCALING EXPONENT OF VELOCITY DIFFERENCES IN ISOTROPIC TURBULENCE
    SIRIVAT, A
    PHYSICA D, 1993, 64 (04): : 395 - 403
  • [30] SCALING EXPONENT OF MULTIPLICITY FLUCTUATION IN PHASE-TRANSITION
    HWA, RC
    PHYSICAL REVIEW D, 1993, 47 (07): : 2773 - 2781