A SOLITON HIERARCHY FROM THE LEVI SPECTRAL PROBLEM AND ITS TWO INTEGRABLE COUPLINGS, HAMILTONIAN STRUCTURE

被引:0
|
作者
zhang, Yongqing [1 ]
li, Yan [1 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2009年 / 23卷 / 05期
关键词
Soliton equation; Lie algebra; Hamiltonian structure; SEMIDIRECT SUMS; LIE-ALGEBRAS; TRANSFORMATIONS; EQUATIONS; IDENTITY;
D O I
10.1142/S0217984909018953
中图分类号
O59 [应用物理学];
学科分类号
摘要
A soliton-equation hierarchy from the D. Levi spectral problem is obtained under the framework of zero curvature equation. By employing two various multi-component Lie algebras and the loop algebras, we enlarge the Levi spectral problem and the corresponding time-part isospectral problems so that two different integrable couplings are produced. Using the quadratic-form identity yields the Hamiltonian structure of one of the two integrable couplings.
引用
收藏
页码:731 / 739
页数:9
相关论文
共 50 条