Domain mu-calculus

被引:4
|
作者
Zhang, GQ [1 ]
机构
[1] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
来源
RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS | 2003年 / 37卷 / 04期
关键词
domain theory; mu-calculus; formal languages; Boolean automata;
D O I
10.1051/ita:2003023
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The basic framework of domain mu-calculus was formulated in [39] more than ten years ago. This paper provides an improved formulation of a fragment of the mu-calculus without function space or powerdomain constructions, and studies some open problems related to this mu-calculus such as decidability and expressive power. A class of language equations is introduced for encoding mu-formulas in order to derive results related to decidability and expressive power of non-trivial fragments of the domain mu-calculus. The existence and uniqueness of solutions to this class of language equations constitute an important component of this approach. Our formulation is based on the recent work of Leiss [23], who established a sophisticated framework for solving language equations using Boolean automata (a.k.a. alternating automata [12,35]) and a generalized notion of language derivatives. Additionally, the early notion of even-linear grammars is adopted here to treat another fragment of the domain mu-calculus.
引用
收藏
页码:337 / 364
页数:28
相关论文
共 50 条
  • [11] Sahlqvist Correspondence for Modal mu-calculus
    Johan van Benthem
    Nick Bezhanishvili
    Ian Hodkinson
    Studia Logica, 2012, 100 : 31 - 60
  • [12] A DECISION PROCEDURE FOR THE PROPOSITIONAL MU-CALCULUS
    KOZEN, D
    PARIKH, R
    LECTURE NOTES IN COMPUTER SCIENCE, 1984, 164 : 313 - 325
  • [13] On the proof theory of the modal mu-calculus
    Studer T.
    Studia Logica, 2008, 89 (3) : 343 - 363
  • [14] The Topological Mu-Calculus: completeness and decidability
    Baltag, Alexandru
    Bezhanishvili, Nick
    Fernandez-Duque, David
    2021 36TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2021,
  • [15] The Topological Mu-Calculus: Completeness and Decidability
    Baltag, Alexandru
    Bezhanishvili, Nick
    Fernandez-Duque, David
    JOURNAL OF THE ACM, 2023, 70 (05)
  • [16] Symmetry Reduction for the Local Mu-Calculus
    Namjoshi, Kedar S.
    Trefler, Richard J.
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, TACAS 2018, PT II, 2018, 10806 : 379 - 395
  • [17] REAL-TIME AND THE MU-CALCULUS
    EMERSON, EA
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 600 : 176 - 194
  • [18] Mu-Calculus Satisfiability with Arithmetic Constraints
    Limon, Y.
    Barcenas, E.
    Benitez-Guerrero, E.
    Castillo, G. Molero
    Velazquez-Mena, A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2020, 46 (08) : 503 - 510
  • [19] An approximation semantics for the propositional mu-calculus
    Villemaire, R
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2002, 2002, 2420 : 637 - 649
  • [20] Sahlqvist Correspondence for Modal mu-calculus
    van Benthem, Johan
    Bezhanishvili, Nick
    Hodkinson, Ian
    STUDIA LOGICA, 2012, 100 (1-2) : 31 - 60