Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model

被引:440
|
作者
Delworth, Thomas L. [1 ]
Rosati, Anthony [1 ]
Anderson, Whit [1 ]
Adcroft, Alistair J.
Balaji, V.
Benson, Rusty [1 ]
Dixon, Keith [1 ]
Griffies, Stephen M. [1 ]
Lee, Hyun-Chul [1 ,2 ]
Pacanowski, Ronald C. [1 ]
Vecchi, Gabriel A. [1 ]
Wittenberg, Andrew T. [1 ]
Zeng, Fanrong [1 ]
Zhang, Rong [1 ]
机构
[1] Princeton Univ, NOAA, GFDL, Princeton, NJ 08542 USA
[2] High Performance Technol Inc, Reston, VA USA
关键词
EL-NINO; SEA-ICE; GLOBAL PRECIPITATION; MESOSCALE EDDIES; NUMERICAL-MODEL; PART I; OCEAN; VARIABILITY; TRANSPORT; IMPACT;
D O I
10.1175/JCLI-D-11-00316.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The authors present results for simulated climate and climate change from a newly developed high-resolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes. Analyses are presented based on the output of a 280-yr control simulation; also presented are results based on a 140-yr simulation in which atmospheric CO2 increases at 1% yr(-1) until doubling after 70 yr. Results are compared to GFDL CM2.1, which has somewhat similar physics but a coarser resolution. The simulated climate in CM2.5 shows marked improvement over many regions, especially the tropics, including a reduction in the double ITCZ and an improved simulation of ENSO. Regional precipitation features are much improved. The Indian monsoon and Amazonian rainfall are also substantially more realistic in CM2.5. The response of CM2.5 to a doubling of atmospheric CO2 has many features in common with CM2.1, with some notable differences. For example, rainfall changes over the Mediterranean appear to be tightly linked to topography in CM2.5, in contrast to CM2.1 where the response is more spatially homogeneous. In addition, in CM2.5 the near-surface ocean warms substantially in the high latitudes of the Southern Ocean, in contrast to simulations using CM2.1.
引用
收藏
页码:2755 / 2781
页数:27
相关论文
共 50 条
  • [41] Structure and Performance of GFDL's CM4.0 Climate Model
    Held, I. M.
    Guo, H.
    Adcroft, A.
    Dunne, J. P.
    Horowitz, L. W.
    Krasting, J.
    Shevliakova, E.
    Winton, M.
    Zhao, M.
    Bushuk, M.
    Wittenberg, A. T.
    Wyman, B.
    Xiang, B.
    Zhang, R.
    Anderson, W.
    Balaji, V.
    Donner, L.
    Dunne, K.
    Durachta, J.
    Gauthier, P. P. G.
    Ginoux, P.
    Golaz, J. -C.
    Griffies, S. M.
    Hallberg, R.
    Harris, L.
    Harrison, M.
    Hurlin, W.
    John, J.
    Lin, P.
    Lin, S. -J.
    Malyshev, S.
    Menzel, R.
    Milly, P. C. D.
    Ming, Y.
    Naik, V.
    Paynter, D.
    Paulot, F.
    Rammaswamy, V.
    Reichl, B.
    Robinson, T.
    Rosati, A.
    Seman, C.
    Silvers, L. G.
    Underwood, S.
    Zadeh, N.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (11) : 3691 - 3727
  • [42] SENSITIVITY OF SIMULATED CLIMATE TO MODEL RESOLUTION
    BOVILLE, BA
    JOURNAL OF CLIMATE, 1991, 4 (05) : 469 - 485
  • [43] GFDL's CM2 global coupled climate models. Part IV: Idealized climate response
    Stouffer, RJ
    Broccoli, AJ
    Delworth, TL
    Dixon, KW
    Gudgel, R
    Held, I
    Hemler, R
    Knutson, T
    Lee, HC
    Schwarzkopf, MD
    Soden, B
    Spelman, MJ
    Winton, M
    Zeng, F
    JOURNAL OF CLIMATE, 2006, 19 (05) : 723 - 740
  • [44] An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model
    Christina M. Patricola
    Mingkui Li
    Zhao Xu
    Ping Chang
    R. Saravanan
    Jen-Shan Hsieh
    Climate Dynamics, 2012, 39 : 2443 - 2463
  • [45] An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model
    Patricola, Christina M.
    Li, Mingkui
    Xu, Zhao
    Chang, Ping
    Saravanan, R.
    Hsieh, Jen-Shan
    CLIMATE DYNAMICS, 2012, 39 (9-10) : 2443 - 2463
  • [46] Current climate and climate change over India as simulated by the Canadian Regional Climate Model
    Adelina Alexandru
    Laxmi Sushama
    Climate Dynamics, 2015, 45 : 1059 - 1084
  • [47] Current climate and climate change over India as simulated by the Canadian Regional Climate Model
    Alexandru, Adelina
    Sushama, Laxmi
    CLIMATE DYNAMICS, 2015, 45 (3-4) : 1059 - 1084
  • [48] Climate Sensitivity of GFDL's CM4.0
    Winton, M.
    Adcroft, A.
    Dunne, J. P.
    Held, I. M.
    Shevliakova, E.
    Zhao, M.
    Guo, H.
    Hurlin, W.
    Krasting, J.
    Knutson, T.
    Paynter, D.
    Silvers, L. G.
    Zhang, R.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (01)
  • [49] Climate forecasting: Build high-resolution global climate models
    Tim Palmer
    Nature, 2014, 515 : 338 - 339
  • [50] Northern Hemisphere Extratropical Cyclones in a Warming Climate in the HiGEM High-Resolution Climate Model
    Catto, Jennifer L.
    Shaffrey, Len C.
    Hodges, Kevin I.
    JOURNAL OF CLIMATE, 2011, 24 (20) : 5336 - 5352