Gauge invariance in fractional field theories

被引:41
|
作者
Herrmann, Richard [1 ]
机构
[1] GigaHedron, D-63225 Langen, Germany
关键词
perturbation and fractional calculus methods; gauge field theory; hadron mass models and calculations;
D O I
10.1016/j.physleta.2008.06.063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The principle of local gauge invariance is applied to fractional wave equations and the interaction term is determined up to order o((g) over bar) in the coupling constant (g) over bar. Based on the Riemann-Liouville fractional derivative definition, the fractional Zeeman effect is used to reproduce the baryon spectrum accurately. The transformation properties of the non-relativistic fractional Schrodinger-equation under spatial rotations are investigated and an internal fractional spin is deduced. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:5515 / 5522
页数:8
相关论文
共 50 条
  • [31] Gauge invariance and the Englert-Brout-Higgs mechanism in non-Hermitian field theories
    Alexandre, Jean
    Ellis, John
    Millington, Peter
    Seynaeve, Dries
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [32] GEOMETRICAL PHASES FROM GLOBAL GAUGE-INVARIANCE OF NONLINEAR CLASSICAL FIELD-THEORIES
    GARRISON, JC
    CHIAO, RY
    PHYSICAL REVIEW LETTERS, 1988, 60 (03) : 165 - 168
  • [33] Gauge invariance and the electric polarization field
    Woolley, R. G.
    Molecular Physics, 88 (01):
  • [34] Domain wall fermion and chiral gauge theories on the lattice with exact gauge invariance
    Kikukawa, Y
    PHYSICAL REVIEW D, 2002, 65 (07) : 745041 - 7450422
  • [35] Gauge invariance and the electric polarization field
    Woolley, RG
    MOLECULAR PHYSICS, 1996, 88 (01) : 291 - 307
  • [36] Non-Abelian gauge theories as a consequence of perturbative quantum gauge invariance
    Aste, A
    Scharf, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (21): : 3421 - 3432
  • [37] Thermal gauge field theories
    Rebhan, A
    LECTURES ON QUARK MATTER, 2002, 583 : 161 - 208
  • [38] Topological conformal field theories and gauge theories
    Costello, Kevin
    GEOMETRY & TOPOLOGY, 2007, 11 : 1539 - 1579
  • [39] On the geometry of gauge field theories
    Hüffel, H
    Kelnhofer, G
    PARTICLE PHYSICS AND THE UNIVERSE, 2005, 98 : 461 - 464
  • [40] Renormalization of gauge field theories
    Burnel, A
    ACTA PHYSICA POLONICA B, 1996, 27 (10): : 2441 - 2451