An inverse problem for dielectrics that depend on two spatial variables

被引:1
|
作者
Hooshyar, M. A. [1 ]
Paudel, Ajaya [1 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75083 USA
关键词
wave propagation; electromagnetic scattering; inverse scattering; SCATTERING PROBLEMS; FORMAL SOLUTIONS;
D O I
10.1002/mop.27383
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The inversion method developed by Reese T. Prosser for waves in three dimensions is modified to solve inverse problems of back scattered data for TM plane waves incident on cylindrical structures with dielectric properties that are function of two spatial variables. Not only the bounds needed for convergence proof of the modified method are found but also the method is numerically implemented and its numerical performance examined. (C) 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:561566, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27383
引用
收藏
页码:561 / 566
页数:6
相关论文
共 50 条
  • [31] INVERSE STEFAN PROBLEM FOR HEAT EQUATION IN 2 SPACE VARIABLES
    COLTON, D
    MATHEMATIKA, 1974, 21 (42) : 282 - 286
  • [32] Geostatistical analysis of inverse problem variables:: Application to seismic tomography
    Martínez, JLF
    Pérez, COM
    González, LMP
    Alvarez, JPF
    Suárez, PC
    MATHEMATICAL GEOLOGY, 2003, 35 (08): : 953 - 969
  • [33] Bayesian inverse problem and optimization with iterative spatial resampling
    Mariethoz, Gregoire
    Renard, Philippe
    Caers, Jef
    WATER RESOURCES RESEARCH, 2010, 46
  • [34] Comparing two spatial variables with the probability of agreement
    Acosta, Jonathan
    Vallejos, Ronny
    Ellison, Aaron M.
    Osorio, Felipe
    de Castro, Mario
    BIOMETRICS, 2024, 80 (01)
  • [35] Inverse scattering transform in two spatial dimensions for the N-wave interaction problem with a dispersive term
    Ismailov, Mansur I.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (05): : 741 - 752
  • [36] A Two-Dimensional Inverse Problem of Viscoelasticity
    Romanov, V. G.
    DOKLADY MATHEMATICS, 2011, 84 (02) : 649 - 652
  • [37] The Two-Dimensional Inverse Conductivity Problem
    Michel, Vincent
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2776 - 2842
  • [38] Two methods for the inverse problem of memory reconstruction
    A. L. Bukhgeim
    N. I. Kalinina
    V. B. Kardakov
    Siberian Mathematical Journal, 2000, 41 : 634 - 642
  • [39] The Two-Dimensional Inverse Conductivity Problem
    Vincent Michel
    The Journal of Geometric Analysis, 2020, 30 : 2776 - 2842
  • [40] Two methods for the inverse problem of memory reconstruction
    Bukhgeim, AL
    Kalinina, NI
    Kardakov, VB
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (04) : 634 - 642