BLOW-UP BEHAVIOR OF HAMMERSTEIN-TYPE VOLTERRA INTEGRAL EQUATIONS

被引:19
|
作者
Brunner, H. [1 ,2 ]
Yang, Z. W. [3 ,4 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 557, Canada
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[3] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[4] SHarbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Ctr Sci Res, Harbin 150001, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Volterra integral equations; Volterra integro-differential equations; blow-up; critical exponent; TIME;
D O I
10.1216/JIE-2012-24-4-487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the blow-up behavior of Hammerstein-type Volterra integral equations. Based on several fundamental assumptions, some necessary and sufficient conditions under which the solution blows up in finite time are given. Some examples illustrate that there may always exist a global solution for a power-law function and that the blow-up behavior only depends upon the value of the kernel in a neighborhood of zero. As an application, we give some results on the blow-up behavior of Volterra integro-differential equations of Hammerstein-type.
引用
收藏
页码:487 / 512
页数:26
相关论文
共 50 条