Distinguishing Unseen from Seen for Generalized Zero-shot Learning

被引:23
|
作者
Su, Hongzu [1 ]
Li, Jingjing [1 ,2 ]
Chen, Zhi [3 ]
Zhu, Lei [4 ]
Lu, Ke [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China
[2] UESTC Guangdong, Inst Elect & Informat Engn, Shenzhen, Guangdong, Peoples R China
[3] Univ Queensland, Brisbane, Qld, Australia
[4] Shandong Normal Univ, Jinan, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52688.2022.00773
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generalized zero-shot learning (GZSL) aims to recognize samples whose categories may not have been seen at training. Recognizing unseen classes as seen ones or vice versa often leads to poor performance in GZSL. Therefore, distinguishing seen and unseen domains is naturally an effective yet challenging solution for GZSL. In this paper, we present a novel method which leverages both visual and semantic modalities to distinguish seen and unseen categories. Specifically, our method deploys two variational autoencoders to generate latent representations for visual and semantic modalities in a shared latent space, in which we align latent representations of both modalities by Wasserstein distance and reconstruct two modalities with the representations of each other. In order to learn a clearer boundary between seen and unseen classes, we propose a two-stage training strategy which takes advantage of seen and unseen semantic descriptions and searches a threshold to separate seen and unseen visual samples. At last, a seen expert and an unseen expert are used for final classification. Extensive experiments on five widely used benchmarks verify that the proposed method can significantly improve the results of GZSL. For instance, our method correctly recognizes more than 99% samples when separating domains and improves the final classification accuracy from 72.6% to 82.9% on AWA1.
引用
收藏
页码:7875 / 7884
页数:10
相关论文
共 50 条
  • [21] Dual insurance for generalized zero-shot learning
    Liang, Jiahao
    Fang, Xiaozhao
    Kang, Peipei
    Han, Na
    Li, Chuang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (03) : 2111 - 2125
  • [22] Model Selection for Generalized Zero-Shot Learning
    Zhang, Hongguang
    Koniusz, Piotr
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 198 - 204
  • [23] Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2371 - 2381
  • [24] Semantics Disentangling for Generalized Zero-Shot Learning
    Chen, Zhi
    Luo, Yadan
    Qiu, Ruihong
    Wang, Sen
    Huang, Zi
    Li, Jingjing
    Zhang, Zheng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8692 - 8700
  • [25] Learning MLatent Representations for Generalized Zero-Shot Learning
    Ye, Yalan
    Pan, Tongjie
    Luo, Tonghoujun
    Li, Jingjing
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2252 - 2265
  • [26] Meta-Learning for Generalized Zero-Shot Learning
    Verma, Vinay Kumar
    Brahma, Dhanajit
    Rai, Piyush
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6062 - 6069
  • [27] Learning the Compositional Domains for Generalized Zero-shot Learning
    Dong, Hanze
    Fu, Yanwei
    Hwang, Sung Ju
    Sigal, Leonid
    Xue, Xiangyang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221
  • [28] A Review of Generalized Zero-Shot Learning Methods
    Pourpanah, Farhad
    Abdar, Moloud
    Luo, Yuxuan
    Zhou, Xinlei
    Wang, Ran
    Lim, Chee Peng
    Wang, Xi-Zhao
    Wu, Q. M. Jonathan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4051 - 4070
  • [29] Attributes learning network for generalized zero-shot learning
    Yun, Yu
    Wang, Sen
    Hou, Mingzhen
    Gao, Quanxue
    NEURAL NETWORKS, 2022, 150 : 112 - 118
  • [30] Transfer Increment for Generalized Zero-Shot Learning
    Feng, Liangjun
    Zhao, Chunhui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2506 - 2520