Bond durability of CFRP laminates-to-steel joints subjected to freeze-thaw

被引:39
|
作者
Yang, Yongming [1 ]
Silva, Manuel A. G. [1 ]
Biscaia, Hugo [2 ]
Chastre, Carlos [3 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Civil Engn, P-2829516 Caparica, Portugal
[2] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Civil Engn, UNIDEMI,FSE, P-2829516 Caparica, Portugal
[3] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Civil Engn, CERIS, P-2829516 Caparica, Portugal
关键词
Durability; CFRP-steel bonded joints; Adhesive; Freeze-thaw; Thermal stress; ENVIRONMENTAL EXPOSURE; DEBONDING PROCESS; CONCRETE; BEAMS; COMPOSITES; ADHESIVE; BEHAVIOR; MODEL;
D O I
10.1016/j.compstruct.2019.01.016
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The degradation mechanisms of bonded joints between CFRP laminates and steel substrates under severe environmental conditions require more durability data and studies to increase the database and better understand their causes. Studies on bond properties of double-strap CFRP-to-steel bonded joints with two different composite materials as well as adhesive coupons subjected to freeze-thaw cycles for 10,000 h were conducted to reduce that gap. In addition, the equivalent to the number of thermal cycles and their slips induced in the CFRP laminates was replicated by an equivalent (mechanical) loading-unloading history condition imposed by a static tensile machine. The mechanical properties of the adhesive coupons and the strength capacity of the bonded joints were only slightly changed by the artificial aging. It was confirmed that the interfacial bond strength between CFRP and adhesive is critically related to the maximum shear stress and failure mode. The interfacial bond strength between adhesive and steel degraded with the aging. However, the equivalent thermal cyclic bond stress caused no detectable damage on the bond because only the interfacial elastic regime was actually mobilized, which confirmed that pure thermal cycles aging, per se, at the level imposed, have a low impact on the degradation of CFRP-to-steel bonded joints.
引用
收藏
页码:243 / 258
页数:16
相关论文
共 50 条
  • [31] Mechanical and durability properties of concrete subjected to early-age freeze-thaw cycles
    Liu, Dongyun
    Tu, Yongming
    Shi, Pan
    Sas, Gabriel
    Elfgren, Lennart
    MATERIALS AND STRUCTURES, 2021, 54 (06)
  • [32] Effects of Freeze-Thaw Cycles on the Behavior of the Bond between CFRP Plates and Concrete Substrates
    Pan, Yunfeng
    Xian, Guijun
    Li, Hui
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2018, 22 (03)
  • [33] Influence of Steel Fiber on Durability Performance of Concrete under Freeze-Thaw Cycles
    Li, Dong
    Guo, Qing
    Liu, Shi
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [34] Effects of sulfate and freeze-thaw cycles on the bond behavior of CFRP-concrete interface
    Zhang, Jiawei
    Li, Hang
    Liu, Shengwei
    Sun, Lin
    Yang, Chenghong
    Zhang, Rongling
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 368
  • [35] Interfacial bond-slip degradation relationship between CFRP plate and steel plate under freeze-thaw cycles
    Pang, Yuyang
    Wu, Gang
    Wang, Haitao
    Liu, Ye
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 214 : 242 - 253
  • [36] Bond durability of basalt-fiber-reinforced-polymer bars embedded in lightweight aggregate concrete subjected to freeze-thaw cycles
    Deng, Peng
    Wang, Yuejiao
    Sun, Yan
    Liu, Yan
    Guo, Wenhao
    STRUCTURAL CONCRETE, 2021, 22 (05) : 2829 - 2848
  • [37] Dynamic and static interfacial bonding properties of CFRP-concrete subjected to freeze-thaw cycles
    Zhang, Zhen-wen
    Zhang, Zi-hua
    Wang, Xuan
    Zhou, Chun-heng
    STRUCTURES, 2022, 37 : 947 - 959
  • [38] Stress intensity factor for an elliptic inclusion in orthotropic laminates subjected to freeze-thaw: Model verification
    Roy, S
    Nie, GH
    Karedla, R
    Dharani, L
    POLYMERS & POLYMER COMPOSITES, 2002, 10 (08): : 571 - 587
  • [39] Experimental characterization of fracture of glass fiber reinforced composites laminates subjected to freeze-thaw cycles
    Abedi, Mohammad
    Moussavi-Torshizi, Seyyed-Ebrahim
    Sarfaraz, Roohollah
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2020, 43 (02) : 242 - 249
  • [40] Effects of freeze-thaw cycles on mode I fracture toughness of adhesively bonded CFRP joints
    Oshima, Sota
    Kitagawa, Keisuke
    Takeda, Tomo
    Kumazawa, Hisashi
    Kitazono, Koichi
    ADVANCED COMPOSITE MATERIALS, 2024, 33 (01) : 90 - 104