Deformable Model-Based Segmentation of Intervertebral Discs from MR Spine Images by Using the SSC Descriptor

被引:1
|
作者
Korez, Robert [1 ]
Ibragimov, Bulat [1 ]
Likar, Bostjan [1 ]
Pernus, Franjo [1 ]
Vrtovec, Tomaz [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
关键词
SPACE; CT;
D O I
10.1007/978-3-319-41827-8_11
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. A fully automatic, accurate and robust segmentation of intervertebral discs in magnetic resonance (MR) images is therefore a prerequisite for the computer-aided diagnosis and quantification of intervertebral disc degeneration. In this paper, we propose an automated framework for intervertebral disc segmentation from MR spine images, in which intervertebral disc detection is performed by a landmark-based approach and segmentation by a deformable model-based approach using the self-similarity context (SSC) descriptor. The performance was evaluated on three publicly available databases of MR spine images that represent the training, on-line and on-site testing data for the intervertebral disc localization and segmentation challenge in conjunction with the 3rd MICCAIWorkshop& Challenge on Computational Methods and Clinical Applications for Spine Imaging MICCAI-CSI2015, yielding an overall mean Euclidean distance of 2.4, 1.7 and 2.2mm for intervertebral disc localization, and an overall mean Dice coefficient of 92.5, 91.5 and 92.0% for intervertebral disc segmentation for training, on-line and on-site testing data, respectively.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 50 条
  • [21] Statistical model-based segmentation of deformable motion
    Kervrann, C
    Heitz, F
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL I, 1996, : 937 - 940
  • [22] Simultaneous Volumetric Segmentation of Vertebral Bodies and Intervertebral Discs on Fat-Water MR Images
    Fallah, Faezeh
    Walter, Sven Stephan
    Bamberg, Fabian
    Yang, Bin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (04) : 1692 - 1701
  • [23] Localization and Segmentation of 3D Intervertebral Discs in MR Images by Data Driven Estimation
    Chen, Cheng
    Belavy, Daniel
    Yu, Weimin
    Chu, Chengwen
    Armbrecht, Gabriele
    Bansmann, Martin
    Felsenberg, Dieter
    Zheng, Guoyan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (08) : 1719 - 1729
  • [24] A NEW DEFORMABLE MODEL-BASED SEGMENTATION APPROACH FOR ACCURATE EXTRACTION OF THE KIDNEY FROM ABDOMINAL CT IMAGES
    Khalifa, F.
    Gimel'farb, G.
    El-Ghar, M. Abo
    Sokhadze, G.
    Manning, S.
    McClure, P.
    Ouseph, R.
    El-Baz, A.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [25] EM Algorithm based Intervertebral Disc Segmentation on MR Images
    Beulah, A.
    Sharmila, Sree T.
    2017 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND SIGNAL PROCESSING (ICCCSP), 2017, : 259 - 264
  • [26] Segmentation of the pectoral muscle in breast MR images using structure tensor and deformable model
    Lee, Myungeun
    Kim, Jong Hyo
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [27] Disc bulge diagnostic model in axial lumbar MR images using Intervertebral disc Descriptor (IdD)
    A. Beulah
    T. Sree Sharmila
    V. K. Pramod
    Multimedia Tools and Applications, 2018, 77 : 27215 - 27230
  • [28] Disc bulge diagnostic model in axial lumbar MR images using Intervertebral disc Descriptor (IdD)
    Beulah, A.
    Sharmila, T. Sree
    Pramod, V. K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (20) : 27215 - 27230
  • [29] Efficient segmentation of lumbar intervertebral disc from MR images
    Silvoster, Leena M.
    Kumar, Retnaswami Mathusoothana S.
    IET IMAGE PROCESSING, 2020, 14 (13) : 3076 - 3083
  • [30] Gaussian mixture model-based segmentation of MR images taken from premature infant brains
    Merisaari, Harri
    Parkkola, Riitta
    Alhoniemi, Esa
    Teras, Mika
    Lehtonen, Liisa
    Haataja, Leena
    Lapinleimu, Helena
    Nevalainen, Olli S.
    JOURNAL OF NEUROSCIENCE METHODS, 2009, 182 (01) : 110 - 122