Mesoporous PdAg Nanospheres for Stable Electrochemical CO2 Reduction to Formate

被引:170
|
作者
Zhou, Yuan [1 ]
Zhou, Rui [1 ]
Zhu, Xiaorong [2 ]
Han, Na [1 ]
Song, Bin [1 ]
Liu, Tongchao [3 ]
Hu, Guangzhi [4 ]
Li, Yafei [2 ]
Lu, Jun [3 ]
Li, Yanguang [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[2] Nanjing Normal Univ, Coll Chem & Mat Sci, Nanjing 210023, Peoples R China
[3] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[4] Yunnan Univ, Sch Ecol & Environm Sci, Inst Ecol Res & Pollut Control Plateau Lakes, Kunming 650504, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
electrochemical CO(2)reduction; formate; mesoporous nanospheres; palladium-silver alloys; stability; CARBON-DIOXIDE; ELECTROREDUCTION; CONVERSION; CATALYSIS; ACID;
D O I
10.1002/adma.202000992
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Palladium is a promising material for electrochemical CO(2)reduction to formate with high Faradaic efficiency near the equilibrium potential. It unfortunately suffers from problematic operation stability due to CO poisoning on surface. Here, it is demonstrated that alloying is an effective strategy to alleviate this problem. Mesoporous PdAg nanospheres with uniform size and composition are prepared from the co-reduction of palladium and silver precursors in aqueous solution using dioctadecyldimethylammonium chloride as the structure-directing agent. The best candidate can initiate CO(2)reduction at zero overpotential and achieve high formate selectivity close to 100% and great stability even at <-0.2 V versus reversible hydrogen electrode. The high selectivity and stability are believed to result from the electronic coupling between Pd and Ag, which lowers the d-band center of Pd and thereby significantly enhances its CO tolerance, as evidenced by both electrochemical analysis and theoretical simulations.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Structural reconstruction of BiPbO2Br nanosheets for electrochemical CO2 reduction to formate
    Sun, Gaoming
    Zou, Chong
    Sun, Wen
    Fang, Ying
    He, Shuijian
    Liu, Yana
    Zhang, Jiguang
    Zhu, Yunfeng
    Wang, Jun
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (16) : 3382 - 3389
  • [42] Halogen-Incorporated Sn Catalysts for Selective Electrochemical CO2 Reduction to Formate
    Wang, Tian
    Chen, Jiadong
    Ren, Xinyi
    Zhang, Jincheng
    Ding, Jie
    Liu, Yuhang
    Lim, Kang Hui
    Wang, Junhu
    Li, Xuning
    Yang, Hongbin
    Huang, Yanqiang
    Kawi, Sibudjing
    Liu, Bin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (10)
  • [43] Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam
    Wang, Yan
    Zhou, Jing
    Lv, Weixin
    Fang, Hailin
    Wang, Wei
    APPLIED SURFACE SCIENCE, 2016, 362 : 394 - 398
  • [44] Promoting Electrochemical CO2 Reduction to Formate via Sulfur-Assisted Electrolysis
    Liu, Yuhang
    Wei, Zhiming
    Su, Xiaozhi
    Shi, Xiuwen
    Liu, Lingyue
    Wang, Tianyu
    Xu, Xueting
    Zhao, Ming
    Zhai, Yueming
    Yang, Hong Bin
    Liu, Bin
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [45] Electrochemical Reduction of CO2 to Formate on Nanoparticulated Bi-Sn-Sb Electrodes
    Avila-Bolivar, Beatriz
    Montiel, Vicente
    Solla-Gullon, Jose
    CHEMELECTROCHEM, 2022, 9 (09):
  • [46] Acceleration of Electrochemical CO2 Reduction to Formate at the Sn/Reduced Graphene Oxide Interface
    Tsujiguchi, Takuya
    Kawabe, Yusuke
    Jeong, Samuel
    Ohto, Tatsuhiko
    Kukunuri, Suresh
    Kuramochi, Hirotaka
    Takahashi, Yasufumi
    Nishiuchi, Tomohiko
    Masuda, Hideki
    Wakisaka, Mitsuru
    Hu, Kailong
    Elumalai, Ganesan
    Fujita, Jun-ichi
    Ito, Yoshikazu
    ACS CATALYSIS, 2021, 11 (06) : 3310 - 3318
  • [47] Efficient electrochemical reduction of CO2 into formate and acetate in polyoxometalate catholyte with indium catalyst
    Zha, Bingjie
    Li, Chunxiang
    Li, Jinjin
    JOURNAL OF CATALYSIS, 2020, 382 : 69 - 76
  • [48] Glycerol oxidation-assisted electrochemical CO2 reduction for the dual production of formate
    Pei, Yuhou
    Pi, Zhenfeng
    Zhong, Heng
    Cheng, Jiong
    Jin, Fangming
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (03) : 1309 - 1319
  • [49] An interactive study of catalyst and mechanism for electrochemical CO2 reduction to formate on Pd surfaces
    Jiang, Tian-Wen
    Qin, Xianxian
    Ye, Ke
    Zhang, Wei-Yi
    Li, Hong
    Liu, Wenhui
    Huo, Shengjuan
    Zhang, Xia-Guang
    Jiang, Kun
    Cai, Wen-Bin
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 334
  • [50] Catalyst design and reactor engineering for electrochemical CO2 reduction to formate and formic acid
    Nankya, Rosalynn
    Elgazzar, Ahmad
    Zhu, Peng
    Chen, Feng-Yang
    Wang, Haotian
    MATERIALS TODAY, 2024, 76 : 94 - 109