Study of fractional integral inequalities involving Mittag-Leffler functions via convexity

被引:4
|
作者
Chen, Zhihua [1 ]
Farid, Ghulam [2 ]
Saddiqa, Maryam [3 ]
Ullah, Saleem [3 ]
Latif, Naveed [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
[3] Air Univ, Dept Math, Islamabad, Pakistan
[4] Jubail Ind Coll, Gen Studies Dept, Jubail Ind City 31961, Jubail, Saudi Arabia
关键词
Convex function; (alpha; h - m)-convex function; Mittag-Leffler function; Fractional integral operators; HADAMARD-TYPE; EXTENSION; OPERATORS; (S;
D O I
10.1186/s13660-020-02465-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies fractional integral inequalities for fractional integral operators containing extended Mittag-Leffler (ML) functions. These inequalities provide upper bounds of left- and right-sided fractional integrals for(alpha,h-m)-convex functions. A generalized fractional Hadamard inequality is established. All the results hold forh-convex, (h, m)-convex,( alpha,m)-convex, (s, m)-convex, and associated functions.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] On new general versions of Hermite–Hadamard type integral inequalities via fractional integral operators with Mittag-Leffler kernel
    Havva Kavurmacı Önalan
    Ahmet Ocak Akdemir
    Merve Avcı Ardıç
    Dumitru Baleanu
    Journal of Inequalities and Applications, 2021
  • [42] Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions
    Farid, Ghulam
    Andric, Maja
    Saddiqa, Maryam
    Pecaric, Josip
    Jung, Chahn Yong
    AIMS MATHEMATICS, 2020, 5 (06): : 7332 - 7349
  • [43] A basic study of a fractional integral operator with extended Mittag-Leffler kernel
    Rahman, Gauhar
    Suwan, Iyad
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    Samraiz, Muhammad
    Ali, Asad
    AIMS MATHEMATICS, 2021, 6 (11): : 12757 - 12770
  • [44] Inequalities of the Ostrowski Type Associated with Fractional Integral Operators Containing the Mittag-Leffler Function
    Chen, Dong
    Mehmood, Sajid
    Farid, Ghulam
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (12):
  • [45] A STUDY ON GENERALIZED MITTAG-LEFFLER FUNCTION VIA FRACTIONAL CALCULUS
    Gurjar, Meena Kumari
    Prajapati, Jyotindra C.
    Gupta, Kantesh
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2014, 5 (03): : 6 - 13
  • [46] HERMITE-HADAMARD TYPE LOCAL FRACTIONAL INTEGRAL INEQUALITIES WITH MITTAG-LEFFLER KERNEL FOR GENERALIZED PREINVEX FUNCTIONS
    Sun, Wenbing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (08)
  • [47] A Class of Fractional Integral Operators Involving a Certain General Multiindex Mittag-Leffler Function
    Srivastava, H. M.
    Bansal, Manish Kumar
    Harjule, Priyanka
    UKRAINIAN MATHEMATICAL JOURNAL, 2024, 75 (08) : 1255 - 1271
  • [48] On Extended General Mittag-Leffler Functions and Certain Inequalities
    Mihai, Marcela, V
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Du, Tingsong
    Kashuri, Artion
    Noor, Khalida Inayat
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 17
  • [49] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    Bansal, M. K.
    Jolly, N.
    Jain, R.
    Kumar, Devendra
    JOURNAL OF ANALYSIS, 2019, 27 (03): : 727 - 740
  • [50] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    M. K. Bansal
    N. Jolly
    R. Jain
    Devendra Kumar
    The Journal of Analysis, 2019, 27 : 727 - 740