Static and Dynamic Chain Structures in the Mean-Field Theory

被引:0
|
作者
Ichikawa, T. [1 ]
Itagaki, N. [1 ]
Loebl, N. [2 ]
Maruhn, J. A. [1 ,2 ]
Oberacker, V. E. [3 ]
Ohkubo, S. [4 ]
Schuetrumpf, B. [2 ]
Umar, A. S. [3 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Goethe Universitaet, Inst Theoret Phys, Frankfurt, Germany
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Kochi Univ, Dept Appl Sci & Environm, Kochi 7808515, Japan
来源
关键词
SKYRME PARAMETRIZATION; SUBNUCLEAR; DENSITY;
D O I
10.1051/epjconf/20111707002
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We give a brief overview of recent work examining the presence of alpha-clusters in light nuclei within the Skyrme-force Hartree-Fock model. Of special signif cance are investigations into alpha-chain structures in carbon isotopes and O-16. Their stability and possible role in fusion reactions are examined in static and time-dependent Hartree-Fock calculations. We f nd a new type of shape transition in collisions and a centrifugal stabilization of the 4 alpha chain state in a limited range of angular momenta. No stabilization is found for the 3 alpha chain.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] RELATIVISTIC MEAN-FIELD THEORY AND HYPERNUCLEI
    MARES, J
    JENNINGS, BK
    NUCLEAR PHYSICS A, 1995, 585 (1-2) : C347 - C348
  • [32] MEAN-FIELD THEORY AND SOLITONIC MATTER
    COHEN, TD
    NUCLEAR PHYSICS A, 1989, 495 (3-4) : 545 - 563
  • [33] MEAN-FIELD THEORY OF THE PROTON GLASS
    DOBROSAVLJEVIC, V
    STRATT, RM
    PHYSICAL REVIEW B, 1987, 36 (16): : 8484 - 8496
  • [34] MEAN-FIELD THEORY OF QUASICRYSTALLINE ORDER
    MERMIN, ND
    TROIAN, SM
    PHYSICAL REVIEW LETTERS, 1985, 54 (14) : 1524 - 1527
  • [35] MEAN-FIELD THEORY OF THE POTTS GLASS
    GROSS, DJ
    KANTER, I
    SOMPOLINSKY, H
    PHYSICAL REVIEW LETTERS, 1985, 55 (03) : 304 - 307
  • [36] MEAN-FIELD THEORY OF POLYMER MELTING
    BASCLE, J
    GAREL, T
    ORLAND, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (23): : L1323 - L1329
  • [37] Nonequilibrium dynamical mean-field theory
    Freericks, J. K.
    Turkowski, V. M.
    Zlatic, V.
    PHYSICAL REVIEW LETTERS, 2006, 97 (26)
  • [38] Mean-field theory of glass transitions
    Tokuyama, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 : 23 - 62
  • [39] Mean-field theory of inhomogeneous fluids
    Tschopp, S. M.
    Vuijk, H. D.
    Sharma, A.
    Brader, J. M.
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [40] Mean-field theory of hot sandpiles
    Vergeles, M
    PHYSICAL REVIEW E, 1997, 55 (05): : 6264 - 6265