Support vector censored quantile regression under random censoring

被引:21
|
作者
Shim, Jooyong [2 ]
Hwang, Changha [1 ]
机构
[1] Dankook Univ, Div Informat & Comp Sci, Seoul 140714, South Korea
[2] Catholic Univ Daegu, Dept Appl Sci, Kyungbuk 702701, South Korea
关键词
MODELS; SURVIVAL;
D O I
10.1016/j.csda.2008.10.037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Censored quantile regression models have received a great deal of attention in both the theoretical and applied statistical literature. In this paper, we propose support vector censored quantile regression (SVCQR) under random censoring using iterative reweighted least squares (IRWLS) procedure based on the Newton method instead of usual quadratic programming algorithms. This procedure makes it possible to derive the generalized approximate cross validation (GACV) method for choosing the hyperparameters which affect the performance of SVCQR. Numerical results are then presented which illustrate the performance of SVCQR using the IRWLS procedure. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:912 / 919
页数:8
相关论文
共 50 条
  • [21] Deep learning for quantile regression under right censoring: DeepQuantreg
    Jia, Yichen
    Jeong, Jong-Hyeon
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 165
  • [22] Support vector quantile regression with varying coefficients
    Jooyong Shim
    Changha Hwang
    Kyungha Seok
    Computational Statistics, 2016, 31 : 1015 - 1030
  • [23] Composite support vector quantile regression estimation
    Jooyong Shim
    Changha Hwang
    Kyungha Seok
    Computational Statistics, 2014, 29 : 1651 - 1665
  • [24] Support vector quantile regression with varying coefficients
    Shim, Jooyong
    Hwang, Changha
    Seok, Kyungha
    COMPUTATIONAL STATISTICS, 2016, 31 (03) : 1015 - 1030
  • [25] Prediction Intervals via Support Vector-quantile Regression Random Forest Hybrid
    Ravi, Vadlamani
    Tejasviram, Vadali
    Sharma, Anurag
    Khansama, Rashmi Ranjan
    COMPUTE'17: PROCEEDINGS OF THE 10TH ANNUAL ACM INDIA COMPUTE CONFERENCE, 2017, : 109 - 113
  • [26] Distributed Censored Quantile Regression
    Sit, Tony
    Xing, Yue
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1685 - 1697
  • [27] Censored quantile regression redux
    Koenker, Roger
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (06): : 1 - 25
  • [28] Envelopes for censored quantile regression
    Zhao, Yue
    Van Keilegom, Ingrid
    Ding, Shanshan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1562 - 1585
  • [29] Functional Censored Quantile Regression
    Jiang, Fei
    Cheng, Qing
    Yin, Guosheng
    Shen, Haipeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 931 - 944
  • [30] QUANTILE CALCULUS AND CENSORED REGRESSION
    Huang, Yijian
    ANNALS OF STATISTICS, 2010, 38 (03): : 1607 - 1637