Support vector censored quantile regression under random censoring

被引:21
|
作者
Shim, Jooyong [2 ]
Hwang, Changha [1 ]
机构
[1] Dankook Univ, Div Informat & Comp Sci, Seoul 140714, South Korea
[2] Catholic Univ Daegu, Dept Appl Sci, Kyungbuk 702701, South Korea
关键词
MODELS; SURVIVAL;
D O I
10.1016/j.csda.2008.10.037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Censored quantile regression models have received a great deal of attention in both the theoretical and applied statistical literature. In this paper, we propose support vector censored quantile regression (SVCQR) under random censoring using iterative reweighted least squares (IRWLS) procedure based on the Newton method instead of usual quadratic programming algorithms. This procedure makes it possible to derive the generalized approximate cross validation (GACV) method for choosing the hyperparameters which affect the performance of SVCQR. Numerical results are then presented which illustrate the performance of SVCQR using the IRWLS procedure. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:912 / 919
页数:8
相关论文
共 50 条
  • [1] Quantile regression under random censoring
    Honoré, B
    Khan, S
    Powell, JL
    JOURNAL OF ECONOMETRICS, 2002, 109 (01) : 67 - 105
  • [2] Semiparametric quantile regression with random censoring
    Francesco Bravo
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 265 - 295
  • [3] Semiparametric quantile regression with random censoring
    Bravo, Francesco
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (01) : 265 - 295
  • [4] Instrumental variable quantile regression under random right censoring
    Beyhum, Jad
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    ECONOMETRICS JOURNAL, 2024, 27 (01): : 21 - 36
  • [5] The Quantile Process under Random Censoring
    Wagener, J.
    Volgushev, S.
    Dette, H.
    MATHEMATICAL METHODS OF STATISTICS, 2012, 21 (02) : 127 - 141
  • [6] The quantile process under random censoring
    J. Wagener
    S. Volgushev
    H. Dette
    Mathematical Methods of Statistics, 2012, 21 (2) : 127 - 141
  • [7] Quantile regression for panel data models with fixed effects under random censoring
    Dai Xiaowen
    Jin Libin
    Tian Yuzhu
    Tian Maozai
    Tang Manlai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (18) : 4430 - 4445
  • [8] Nonparametric test for checking lack of fit of the quantile regression model under random censoring
    Wang, Lan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2008, 36 (02): : 321 - 336
  • [9] Monotone support vector quantile regression
    Shim, Jooyong
    Seok, Kyungha
    Hwang, Changha
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (10) : 5180 - 5193
  • [10] Weighted composite quantile regression with censoring indicators missing at random
    Wang, Jiang-Feng
    Jiang, Wei-Jun
    Xu, Fang-Yin
    Fu, Wu-Xin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (12) : 2900 - 2917