Bonding Based Channel Transfer and Low Temperature Process for Monolithic 3D Integration Platform Development

被引:0
|
作者
Choi, Rino [1 ]
Yu, Hyun-Yong [2 ]
Kim, Hyungsub [3 ]
Ryu, Han-Youl [4 ]
Bae, Hee-Kyung [5 ]
Choi, Kevin Kinam [6 ]
Cha, Yong-Won [6 ]
Choi, Changhwan [7 ]
机构
[1] Inha Univ, Dept Mat Sci & Engn, Incheon 402751, South Korea
[2] Korea Univ, Sch Elect Engn, Seoul 136701, South Korea
[3] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea
[4] Inha Univ, Dept Phys, Incheon 402751, South Korea
[5] Natl NanoFab Ctr NNFC, Daejon 34141, South Korea
[6] The Bondis, Hwaseong 18449, South Korea
[7] Hanyang Univ, Div Mat Sci & Engn, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Monolithic; 3D; Low Temperature Bonding; Epitaxial Growth; Gate Stack; Laser Annealing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have studied low temperature processes for monolithic 3D integration platform development including hydrogen/helium ion implantation-based wafer cleavage & bonding (<450 degrees C), low temperature (<550 degrees C) in-situ doped S/D selective SiGe epi process, low temperature (<200 degrees C) gate stack on the chemical-mechanical polished (CMP) wafer, and green-lased annealing. These unit technologies can be adopted to achieve 3D integration platform technology for the high performance and low power applications.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Formation techniques for upper active channel in monolithic 3D integration: an overview
    An Hoang-Thuy Nguyen
    Manh-Cuong Nguyen
    Anh-Duy Nguyen
    Seung Joon Jeon
    Noh-Hwal Park
    Jeong-Hwan Lee
    Rino Choi
    Nano Convergence, 11
  • [32] Formation techniques for upper active channel in monolithic 3D integration: an overview
    Nguyen, An Hoang-Thuy
    Nguyen, Manh-Cuong
    Nguyen, Anh-Duy
    Jeon, Seung Joon
    Park, Noh-Hwal
    Lee, Jeong-Hwan
    Choi, Rino
    NANO CONVERGENCE, 2024, 11 (01)
  • [33] Low Temperature Cu nanorod/Sn/Cu nanorod Bonding Technology for 3D Integration
    Du, Li
    Shi, Tielin
    Tang, Zirong
    Shen, Junjie
    Liao, Guanglan
    2016 IEEE 66TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2016, : 951 - 956
  • [34] Low Temperature Cu-Cu Bonding Using Ag Nanostructure for 3D Integration
    Liu, Ziyu
    Cai, Jian
    Wang, Qian
    Tan, Lin
    Hun, Yang
    ECS SOLID STATE LETTERS, 2015, 4 (10) : P75 - P76
  • [35] Low Temperature Direct Bonding 3D Stacking Technologies for High Density Device Integration
    Di Cioccio, L.
    Radu, I.
    Gaudin, G.
    Lacave, T.
    Baudin, F.
    Sadaka, M.
    Signamarcheix, T.
    ULSI PROCESS INTEGRATION 8, 2013, 58 (09): : 17 - 28
  • [36] LOW TEMPERATURE ADHESIVE WAFER BONDING USING OSTE(+) FOR HETEROGENEOUS 3D MEMS INTEGRATION
    Forsberg, Fredrik
    Saharil, Farizah
    Stemme, Goran
    Roxhed, Niclas
    van der Wijngaart, Wouter
    Haraldsson, Tommy
    Niklaus, Frank
    26TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2013), 2013, : 343 - 346
  • [37] Low-Temperature Nanosecond Laser Process of HZO-IGZO FeFETs toward Monolithic 3D System on Chip Integration
    Kim, Dongsu
    Jeong, Heejae
    Pyo, Goeun
    Heo, Su Jin
    Baik, Seunghun
    Kim, Seonhyoung
    Choi, Hong Soo
    Kwon, Hyuk-Jun
    Jang, Jae Eun
    ADVANCED SCIENCE, 2024, 11 (28)
  • [38] Low Temperature Thermocompression Bonding Based on Copper Nanostructure for 3D Packaging
    Cai, Mingxian
    Chen, Mingxiang
    Liu, Sheng
    2011 12TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY AND HIGH DENSITY PACKAGING (ICEPT-HDP), 2011, : 57 - 60
  • [39] A versatile and flexible low-temperature full-wafer bonding process of monolithic 3D microfluidic structures in SU-8
    Steigert, J.
    Brett, O.
    Mueller, C.
    Strasser, M.
    Wangler, N.
    Reinecke, H.
    Daub, M.
    Zengerle, R.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (09)
  • [40] Low Temperature Wafer Bonding of Low-κ Carbon-Doped Oxide for Application in 3D Integration
    Tan, C. S.
    Chong, G. Y.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (02) : H27 - H29