3D object recognition based on hierarchical eigen-shapes and Bayesian inference

被引:2
|
作者
Kostiainen, T [1 ]
Kalliomäki, I [1 ]
Tamminen, T [1 ]
Lampinen, J [1 ]
机构
[1] Aalto Univ, Lab Computat Engn, FIN-02015 Espoo, Finland
关键词
3-D object representation; Bayesian inference; eigen-shapes;
D O I
10.1117/12.444179
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present results of using Bayesian inference for recovering the 3-D shape and texture of an object based on information extracted from a single 2-D image. We are using a number of different models for specific object classes. The goal is to combine the classes to a hierarchical structure. Instead of searching for the most probable explanation we estimate the entire posterior distribution of the model parameters using Markov chain Monte Carlo methods. The evaluation of model fit is based on combining edge information with intensity difference between the model and the target image.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 50 条
  • [31] Combining 3D Shape and Color for 3D Object Recognition
    Brandao, Susana
    Costeira, Joao P.
    Veloso, Manuela
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2016), 2016, 9730 : 481 - 489
  • [32] A Constraint Satisfaction Framework with Bayesian Inference for Model-Based Object Recognition
    Kasprzak, Wlodzimierz
    Czajka, Lukasz
    Wilkowski, Artur
    COMPUTER VISION AND GRAPHICS, PT II, 2010, 6375 : 1 - 8
  • [33] BodyNet: Volumetric Inference of 3D Human Body Shapes
    Varol, Gul
    Ceylan, Duygu
    Russell, Bryan
    Yang, Jimei
    Yumer, Ersin
    Laptev, Ivan
    Schmid, Cordelia
    COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 20 - 38
  • [34] Accelerated Variational Inference for Beta-Liouville Mixture Learning with Application to 3D shapes Recognition
    Fan, Wentao
    Al-Osaimi, Faisal R.
    Bouguila, Nizar
    Du, Ji-Xiang
    2016 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2016, : 394 - 398
  • [35] Automatic Scene Inference for 3D Object Compositing
    Karsch, Kevin
    Sunkavalli, Kalyan
    Hadap, Sunil
    Carr, Nathan
    Jin, Hailin
    Fonte, Rafael
    Sittig, Michael
    Forsyth, David
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (03):
  • [36] Predictive 3D Sonar Mapping of Underwater Environments via Object-specific Bayesian Inference
    McConnell, John
    Englot, Brendan
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 6761 - 6767
  • [37] 3D Face Hierarchical Recognition Based on Geometric and Curvature Features
    Lei Yunqi
    Li Qingmin
    Song Xiaohing
    Shi Zhenxiang
    Chen Dongjie
    2009 INTERNATIONAL SYMPOSIUM ON COMPUTER NETWORK AND MULTIMEDIA TECHNOLOGY (CNMT 2009), VOLUMES 1 AND 2, 2009, : 740 - 743
  • [38] A flexible similarity measure for 3D shapes recognition
    Adán, A
    Adán, M
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (11) : 1507 - 1520
  • [39] Trains of keypoints for 3D object recognition
    Arnaud, Elise
    Delponte, Elisabetta
    Odone, Francesca
    Verri, Alessandro
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 1014 - +
  • [40] A new method for recognition of 3D object
    Sun, Jian
    Zhou, Fengqi
    Zhou, Jun
    ISSCAA 2006: 1ST INTERNATIONAL SYMPOSIUM ON SYSTEMS AND CONTROL IN AEROSPACE AND ASTRONAUTICS, VOLS 1AND 2, 2006, : 475 - +