An interior-point algorithm for the minimization arising from 3D contact problems with friction

被引:24
|
作者
Kucera, R. [1 ]
Machalova, J. [2 ]
Netuka, H. [2 ]
Zencak, P. [2 ]
机构
[1] VSB TU Ostrava, Ctr Excellence IT4I, Ostrava 70833, Czech Republic
[2] Palacky Univ, Fac Sci, Dept Math Anal & Applicat Math, Olomouc 77146, Czech Republic
来源
OPTIMIZATION METHODS & SOFTWARE | 2013年 / 28卷 / 06期
关键词
interior-point algorithm; convergence; preconditioners; contact problems; friction; 65K05; 90C51; 74M10; MINIMIZING QUADRATIC-FUNCTIONS; NUMERICAL REALIZATION; COULOMB-FRICTION; CONSTRAINTS; OPTIMIZATION; CONVERGENCE; SUBJECT;
D O I
10.1080/10556788.2012.684352
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The paper deals with a variant of the interior-point method for the minimization of strictly quadratic objective function subject to simple bounds and separable quadratic inequality constraints. Such minimizations arise from the finite element approximation of contact problems of linear elasticity with friction in three space dimensions. The main goal of the paper is the convergence analysis of the algorithm and its implementation. The optimal preconditioners for solving ill-conditioned inner linear systems are proposed. Numerical experiments illustrate the computational efficiency for large-scale problems.
引用
收藏
页码:1195 / 1217
页数:23
相关论文
共 50 条
  • [41] A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law
    Zhang, HW
    He, SY
    Li, XS
    Wriggers, P
    COMPUTATIONAL MECHANICS, 2004, 34 (01) : 1 - 14
  • [42] A theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction
    Dostal, Z.
    Kozubek, T.
    Markopoulos, A.
    Brzobohaty, T.
    Vondrak, V.
    Horyl, P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 205 : 110 - 120
  • [43] A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law
    H. W. Zhang
    S. Y. He
    X. S. Li
    P. Wriggers
    Computational Mechanics, 2004, 34 : 1 - 14
  • [44] Duality Method for Solving 3D Contact Problems with Friction
    R. V. Namm
    G. I. Tsoy
    Computational Mathematics and Mathematical Physics, 2023, 63 : 1350 - 1361
  • [45] Duality Method for Solving 3D Contact Problems with Friction
    Namm, R. V.
    Tsoy, G. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (07) : 1350 - 1361
  • [46] Solving L1-CTA in 3D tables by an interior-point method for primal block-angular problems
    Jordi Castro
    Jordi Cuesta
    TOP, 2013, 21 : 25 - 47
  • [47] An interior point optimization algorithm for contact problems in linear elasticity
    Auatt, S
    Borges, LMSA
    Herskovits, J
    NUMERICAL METHODS IN ENGINEERING '96, 1996, : 855 - 860
  • [48] Solving L1-CTA in 3D tables by an interior-point method for primal block-angular problems
    Castro, Jordi
    Cuesta, Jordi
    TOP, 2013, 21 (01) : 25 - 47
  • [49] A primal-dual interior-point algorithm for nonlinear least squares constrained problems
    M. Fernanda
    P. Costa
    Edite M. G. P. Fernandes
    Top, 2005, 13 (1) : 145 - 166
  • [50] A numerical dynamic behaviour model for 3D contact problems with friction
    Pop, Nicolae
    Vladareanu, Luige
    Popescu, Ileana Nicoleta
    Ghita, Constantin
    Gal, Alexandru
    Cang, Shuang
    Yu, Hongnian
    Bratu, Vasile
    Deng, Mingcong
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 94 : 285 - 291