An interior-point algorithm for the minimization arising from 3D contact problems with friction

被引:24
|
作者
Kucera, R. [1 ]
Machalova, J. [2 ]
Netuka, H. [2 ]
Zencak, P. [2 ]
机构
[1] VSB TU Ostrava, Ctr Excellence IT4I, Ostrava 70833, Czech Republic
[2] Palacky Univ, Fac Sci, Dept Math Anal & Applicat Math, Olomouc 77146, Czech Republic
来源
OPTIMIZATION METHODS & SOFTWARE | 2013年 / 28卷 / 06期
关键词
interior-point algorithm; convergence; preconditioners; contact problems; friction; 65K05; 90C51; 74M10; MINIMIZING QUADRATIC-FUNCTIONS; NUMERICAL REALIZATION; COULOMB-FRICTION; CONSTRAINTS; OPTIMIZATION; CONVERGENCE; SUBJECT;
D O I
10.1080/10556788.2012.684352
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The paper deals with a variant of the interior-point method for the minimization of strictly quadratic objective function subject to simple bounds and separable quadratic inequality constraints. Such minimizations arise from the finite element approximation of contact problems of linear elasticity with friction in three space dimensions. The main goal of the paper is the convergence analysis of the algorithm and its implementation. The optimal preconditioners for solving ill-conditioned inner linear systems are proposed. Numerical experiments illustrate the computational efficiency for large-scale problems.
引用
收藏
页码:1195 / 1217
页数:23
相关论文
共 50 条
  • [1] INTERIOR-POINT ALGORITHM FOR QUADRATICALLY CONSTRAINED ENTROPY MINIMIZATION PROBLEMS
    JI, J
    POTRA, FA
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 77 (01) : 79 - 95
  • [2] INTERIOR POINT ALGORITHMS FOR 3D CONTACT PROBLEMS
    Kucera, Radek
    Machalova, Jitka
    Zencak, Pavel
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 14, 2008, : 111 - 117
  • [3] An algorithm for solving 3D contact problems with friction
    Kucera, R
    Haslinger, J
    Dostál, Z
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 217 - 220
  • [4] An Interior-Point Algorithm for Nonlinear Minimax Problems
    Obasanjo, E.
    Tzallas-Regas, G.
    Rustem, B.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 144 (02) : 291 - 318
  • [5] An Interior-Point Algorithm for Nonlinear Minimax Problems
    E. Obasanjo
    G. Tzallas-Regas
    B. Rustem
    Journal of Optimization Theory and Applications, 2010, 144 : 291 - 318
  • [6] A POSITIVE INTERIOR-POINT ALGORITHM FOR NONLINEAR COMPLEMENTARITY PROBLEMS
    马昌凤
    梁国平
    陈新美
    AppliedMathematicsandMechanics(EnglishEdition), 2003, (03) : 355 - 362
  • [7] A positive interior-point algorithm for nonlinear complementarity problems
    Ma, CF
    Liang, GP
    Chen, XM
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (03) : 355 - 362
  • [8] A positive interior-point algorithm for nonlinear complementarity problems
    Ma Chang-feng
    Liang Guo-ping
    Chen Xin-mei
    Applied Mathematics and Mechanics, 2003, 24 (3) : 355 - 362
  • [9] An algorithm for the numerical realization of 3D contact problems with Coulomb friction
    Haslinger, J
    Kucera, R
    Dostál, Z
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 164 : 387 - 408
  • [10] BOUNDS ON EIGENVALUES OF MATRICES ARISING FROM INTERIOR-POINT METHODS
    Greif, Chen
    Moulding, Erin
    Orban, Dominique
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) : 49 - 83