ORTHOGONAL COMPLEMENTING IN HILBERT C*-MODULES

被引:3
|
作者
Guljas, Boris [1 ]
机构
[1] Univ Zagreb, Dept Math, Bijenicka C 30, Zagreb 10000, Croatia
来源
ANNALS OF FUNCTIONAL ANALYSIS | 2019年 / 10卷 / 02期
关键词
Hilbert C*-modules; C*-algebra of compact operators; orthogonal complements; orthogonal closure; strict closure; SUBMODULES;
D O I
10.1215/20088752-2018-0028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize orthogonally complemented submodules in Hilbert C*-modules by their orthogonal closures. Applying Magajna's characterization of Hilbert C*-modules over C*-algebras of compact operators by the complementing property of submodules, we give an elementary proof of Schweizer's characterization of Hilbert C*-modules over C*-algebras of compact operators. Also, we prove analogous characterization theorems for C*-algebras of compact operators related to topological properties of submodules of strict completions of Hilbert modules over a nonunital C*-algebra.
引用
收藏
页码:196 / 202
页数:7
相关论文
共 50 条
  • [21] A SURVEY ON EXTENSIONS OF HILBERT C*-MODULES
    Kolarec, Biserka
    QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 29 : 209 - 221
  • [22] Pullback diagram of Hilbert C*-modules
    Amyari, Maryam
    Chakoshi, Mahnaz
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (02) : 569 - 575
  • [23] On∗-fusion frames for Hilbert C∗-modules
    Assila, Nadia
    Kabbaj, Samir
    Zoubeir, Hicham
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [24] Geometrical aspects of Hilbert C*-modules
    Frank, M
    POSITIVITY, 1999, 3 (03) : 215 - 243
  • [25] Invertibility of Multipliers in Hilbert C*-modules
    Rashidi-Kouchi, M.
    Rahimi, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 21 - 37
  • [26] NUMERICAL RADIUS IN HILBERT C*-MODULES
    Zamani, Ali
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1017 - 1030
  • [27] MORITA EQUIVALENCE OF HILBERT C*- MODULES
    Amini, Massoud
    Asadi, Mohammad B.
    Joita, Maria
    Rezavand, Reza
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (01): : 102 - 110
  • [28] On equivariant embedding of Hilbert C* modules
    Debashish Goswami
    Proceedings - Mathematical Sciences, 2009, 119 : 63 - 70
  • [29] Hilbert C*-modules over Σ*-aIgebras
    Bearden, Clifford A.
    STUDIA MATHEMATICA, 2016, 235 (03) : 269 - 304
  • [30] Pair frames in Hilbert C*-modules
    Azandaryani, M. Mirzaee
    Fereydooni, A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):