On the Cauchy problem of the nonlinear Schrodinger equation without gauge invariance

被引:0
|
作者
Ren, Yuanyuan [1 ]
Li, Yongsheng [1 ]
Wang, Xiaolong [2 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou, Guangdong, Peoples R China
[2] South China Univ Technol, Dept Math, Guangzhou, Guangdong, Peoples R China
关键词
Nonlinear Schrodinger equation; weak solution; non-gauge invariance; blow up; DATA BLOW-UP; SCATTERING; NONEXISTENCE;
D O I
10.1080/00036811.2018.1430776
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to study the Cauchy problem of the nonlinear Schrodinger equation without gauge invariance where and . When , we first prove local well-posedness of the equation in . If in addition, , we prove the global well-posedness with small initial data in . Under a suitable condition on the initial data and , we prove that the -norm of the solution would blow up in finite time although the initial data are arbitrarily small. Meanwhile, we also give a large initial data blow-up result when in . Finally, we show the non-existence of local weak solution for some -data with when 1 + 4/n-2m.
引用
收藏
页码:1415 / 1428
页数:14
相关论文
共 50 条
  • [41] Lifespan of strong solutions to the periodic nonlinear Schrödinger equation without gauge invariance
    Kazumasa Fujiwara
    Tohru Ozawa
    Journal of Evolution Equations, 2017, 17 : 1023 - 1030
  • [42] CAUCHY PROBLEM FOR NONLINEAR BIHARMONIC EQUATION
    SCHAEFER, PW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 363 - &
  • [43] On the Cauchy Problem For The Nonlinear Heat Equation
    Nikolova, Elena
    Tarulli, Mirko
    Venkov, George
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [44] CAUCHY PROBLEM FOR NONLINEAR BIHARMONIC EQUATION
    SCHAEFER, PW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1971, 36 (03) : 660 - &
  • [45] Conditional stability for a Cauchy problem for the ultrahyperbolic Schrodinger equation
    Golgeleyen, Ismet
    Kaytmaz, Ozlem
    APPLICABLE ANALYSIS, 2022, 101 (04) : 1505 - 1516
  • [46] On the Cauchy problem for a nonlinear Kolmogorov equation
    Pascucci, A
    Polidoro, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (03) : 579 - 595
  • [47] On the Cauchy problem for the Schrodinger equation with superoscillatory initial data
    Aharonov, Y.
    Colombo, E.
    Sabadini, I.
    Struppa, D. C.
    Tollaksen, J.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (02): : 165 - 173
  • [48] On the Cauchy problem for the Schrodinger equation with generator of variable type
    Sakbaev, VZ
    DIFFERENTIAL EQUATIONS, 2004, 40 (02) : 241 - 255
  • [49] The Cauchy problem for nonlinear Schrodinger equations in modulation spaces
    Ru, Shaolei
    Chen, Jiecheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 24 : 83 - 97
  • [50] Cauchy problem for the nonlinear Schrodinger-IMBq equations
    Wang, SB
    Chen, GW
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2006, 6 (01): : 203 - 214