Monitoring and Change Detection of Natural Disaster (Like Subsidence) Using Synthetic Aperture Radar (SAR) Data

被引:9
|
作者
Singh, D. [1 ]
Chamundeeswari, V. V. [1 ]
Singh, K. [1 ]
Wiesbeck, Werner [2 ]
机构
[1] Indian Inst Technol Roorkee, Roorkee, Uttar Pradesh, India
[2] Univ Karlsruhe, Karlsruhe, Germany
关键词
change detection; D-InSAR; monitoring; MRD; SAR; subsidence; PCA;
D O I
10.1109/AMTA.2008.4763244
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Synthetic Aperture Radar (SAR) is capable of generating fine-resolution Images of the earth terrain unhindered by weather and illumination conditions. These special properties develop Interest fit the researchers worldwide for maximum use of Radar Images for various applications. In this chain, monitoring natural disaster with SAR images is one of the challenging research areas. The present paper deals with monitoring and observing the changes In subsidence due to natural disaster. For this purpose, New Orleans City of USA has been taken as a test area. MRD(Minimum Ratio detector) is applied on raw SAR data and D-InSAR on complex data to monitor and observe change detection due to subsidence in this area.
引用
收藏
页码:419 / +
页数:2
相关论文
共 50 条
  • [21] On the Use of Interferometric Synthetic Aperture Radar Data for Monitoring and Forecasting Natural Hazards
    Bernardi, Mara S.
    Africa, Pasquale C.
    de Falco, Carlo
    Formaggia, Luca
    Menafoglio, Alessandra
    Vantini, Simone
    MATHEMATICAL GEOSCIENCES, 2021, 53 (08) : 1781 - 1812
  • [22] Coal mining induced land subsidence monitoring using multiband spaceborne differential interferometric synthetic aperture radar data
    Yue, Huanyin
    Liu, Guang
    Guo, Huadong
    Li, Xinwu
    Kang, Zhizhong
    Wang, Runfeng
    Zhong, Xuelian
    JOURNAL OF APPLIED REMOTE SENSING, 2011, 5
  • [23] GROUND DISPLACEMENT DETECTION AND MONITORING USING SYNTHETIC APERTURE RADAR IMAGERY
    Negula, Iulia Dana
    Poenaru, Violeta
    INFORMATICS, GEOINFORMATICS AND REMOTE SENSING, VOL I (SGEM 2015), 2015, : 1083 - 1088
  • [24] Application of Data Driven Optimization for Change Detection in Synthetic Aperture Radar Images
    Li, Yangyang
    Liu, Guangyuan
    Li, Tiantian
    Jiao, Licheng
    Lu, Gao
    Marturi, Naresh
    IEEE ACCESS, 2020, 8 (08): : 11426 - 11436
  • [25] Monitoring natural gas storage using Synthetic Aperture Radar: are the residuals informative?
    Vasco, D. W.
    Samsonov, Sergey, V
    Wang, Kang
    Burgmann, Roland
    Jeanne, Pierre
    Foxall, William
    Zhang, Yingqi
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 228 (02) : 1438 - 1456
  • [26] Dual frequency Synthetic Aperture Radar (SAR) mission for monitoring earth
    Hilland, J
    Bard, S
    Key, R
    Kim, Y
    Vaze, P
    Huneycutt, B
    2001 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-7, 2001, : 719 - 724
  • [27] Deep Learning for Rapid Landslide Detection using Synthetic Aperture Radar (SAR) Datacubes
    Boehm, Vanessa
    Leong, Wei Ji
    Mahesh, Ragini Bal
    Prapas, Ioannis
    Nemni, Edoardo
    Kalaitzis, Freddie
    Ganju, Siddha
    Ramos-Pollan, Raul
    arXiv, 2022,
  • [28] Detection of oil spills near offshore installations using synthetic aperture radar (SAR)
    Espedal, HA
    Johannessen, OM
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (11) : 2141 - 2144
  • [29] Synthetic Aperture Radar Tomography for Change Detection Applications
    Dominguez, Elias Mendez
    Small, David
    Henke, Daniel
    2019 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2019,
  • [30] Evaluation of tsunami inundation using synthetic aperture radar (SAR) data and numerical modeling
    Iyyappan, M.
    Usha, Tune
    Ramakrishnan, S. S.
    Raju, K. Srinivasa
    Gopinath, G.
    Selvan, S. Chenthamil
    Dash, S. K.
    Mishra, P.
    NATURAL HAZARDS, 2018, 92 (03) : 1419 - 1432