A coloring algorithm for 4K1-free line graphs

被引:5
|
作者
Fraser, Dallas J. [1 ]
Hamel, Angele M. [1 ]
Hoang, Chinh T. [1 ]
Maffray, Frederic [2 ]
机构
[1] Wilfrid Laurier Univ, Dept Phys & Comp Sci, Waterloo, ON, Canada
[2] Univ Grenoble Alpes, CNRS, Lab G SCOP, Grenoble, France
基金
加拿大自然科学与工程研究理事会;
关键词
Graph coloring; Claw; K-5 \ e; Line-graph;
D O I
10.1016/j.dam.2017.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a family F of graphs, let Free(F) be the class of graphs that do not contain any member of as an induced subgraph. When F is a set of four-vertex graphs the complexity of the vertex coloring problem in Free(F) is known, with three exceptions: F = {claw, 4K(1)}, = {claw, 4K(1), co-diamond}, and F = {C-4, 4K(1)}. In this paper, we study the coloring problem for Free(claw, 4K(1)). We solve the vertex coloring problem for a subclass of Free(claw, 4K(1)) which contains the class of 4K(1)-free line graphs. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 50 条
  • [11] Strong Edge Coloring of K4 (t)-Minor Free Graphs
    Yin, Huixin
    Han, Miaomiao
    Xu, Murong
    AXIOMS, 2023, 12 (06)
  • [12] Decomposition and r -hued Coloring of K 4 (7) -minor free graphs
    Chen, Ye
    Fan, Suohai
    Lai, Hong-Jian
    Song, Huimin
    Xu, Murong
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 384
  • [13] A new algorithm for on-line coloring bipartite graphs
    Broersma, Hajo J.
    Capponi, Agostino
    Paulusma, Daniel
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) : 72 - 91
  • [14] List-k-Coloring H-Free Graphs for All k > 4
    Chudnovsky, Maria
    Hajebi, Sepehr
    Spirkl, Sophie
    COMBINATORICA, 2024, 44 (05) : 1063 - 1068
  • [15] Coloring graphs with no odd-K4
    Zang, WN
    DISCRETE MATHEMATICS, 1998, 184 (1-3) : 205 - 212
  • [16] List star edge-coloring of k-degenerate graphs and K4-minor free graphs
    Kerdjoudj, Samia
    Raspaud, Andre
    DISCRETE APPLIED MATHEMATICS, 2019, 261 : 268 - 275
  • [17] Coloring graphs with no odd-K4
    Discrete Math, 1-3 (205-212):
  • [18] Clustered coloring of (path+2K1)-free graphs on surfaces
    Dvorak, Zdenek
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 173 : 45 - 67
  • [19] Facial edge-face coloring of K4-minor-free graphs
    Xu, Miaodi
    Chen, Min
    DISCRETE MATHEMATICS, 2020, 343 (06)
  • [20] Vertex coloring (4K1, hole-twin, 5-wheel)-free graphs
    Dai, Yingjun
    Foley, Angele M.
    Hoang, Chinh T.
    THEORETICAL COMPUTER SCIENCE, 2022, 914 : 14 - 22