Generalized weighted Stechkin-Marchaud-type inequalities for Baskakov-Durrmeyer operators

被引:1
|
作者
Guo, Feng [1 ]
机构
[1] Taizhou Univ, Dept Math, Taizhou 317000, Zhejiang, Peoples R China
关键词
Baskakov-Durrmeyer operators; Stechkin-Marchaud-type inequality; K-functional; Weighted modulus of smoothness; STRONG CONVERSE INEQUALITIES;
D O I
10.1016/j.jmaa.2012.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce new weighted modulus of smoothness omega(2)(phi beta)(f; t)(omega.lambda) and prove the generalization of Stechkin-Marchaud-type inequalities of weighted approximation for Baskakov-Durrmeyer operators, from which the inverse results of Baskakov-Durrmeyer operators with omega(2)(phi beta)(f; t)(omega.lambda) are obtained. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 50 条
  • [41] Approximation on parametric extension of Baskakov–Durrmeyer operators on weighted spaces
    Md Nasiruzzaman
    Nadeem Rao
    Samar Wazir
    Ravi Kumar
    Journal of Inequalities and Applications, 2019
  • [42] Approximation by q-Baskakov Durrmeyer type operators
    Agrawal, P. N.
    Kumar, A. Sathish
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2014, 63 (01) : 73 - 89
  • [43] Approximation of Baskakov type Polya-Durrmeyer operators
    Gupta, Vijay
    Acu, Ana Maria
    Sofonea, Daniel Florin
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 294 : 318 - 331
  • [44] Approximation Behaviour of Generalized Baskakov-Durrmeyer-Schurer Operators
    Rao, Nadeem
    Raiz, Mohd
    Mishra, Vishnu Narayan
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2024, 51 (01): : 90 - 105
  • [45] On the Durrmeyer type modification of the q-Baskakov type operators
    Aral, Ali
    Gupta, Vijay
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1171 - 1180
  • [46] GENERALIZED BASKAKOV TYPE OPERATORS
    Erencin, Aysegul
    Olgun, Ali
    Tasdelen, Fatma
    MATHEMATICA SLOVACA, 2017, 67 (05) : 1269 - 1277
  • [47] The generalized Baskakov type operators
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 226 - 232
  • [48] HYPERGEOMETRIC REPRESENTATION FOR BASKAKOV-DURRMEYER-STANCU TYPE OPERATORS
    Mishra, Vishnu Narayan
    Khan, Huzoor H.
    Khatri, Kejal
    Mishra, Lakshmi Narayan
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 5 (03): : 18 - 26
  • [49] Convergence of modification of the Durrmeyer type q-Baskakov operators
    Cai, Qing-Bo
    Zeng, Xiao-Ming
    GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (01) : 49 - 61
  • [50] Durrmeyer Modification of Lupas Type Baskakov Operators Based on IPED
    Dhamija, Minakshi
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 111 - 119