Random dynamical systems generated by stochastic Navier-Stokes equations on a rotating sphere

被引:6
|
作者
Brzezniak, Z. [1 ]
Goldys, B. [2 ]
Le Gia, Q. T. [3 ]
机构
[1] Univ York, Dept Math, York Y010 5DD, N Yorkshire, England
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Stochastic Navier-Stokes equations; Unit sphere; Random dynamical system; SEMIGROUPS; REGULARITY; MANIFOLDS; VECTOR; MOTION; SPACE;
D O I
10.1016/j.jmaa.2015.01.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first prove the existence and uniqueness of the solution to the stochastic Navier-Stokes equations on the rotating 2-dimensional unit sphere. Then we show the existence of an asymptotically compact random dynamical system associated with the equations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:505 / 545
页数:41
相关论文
共 50 条
  • [21] Partial regularity for the stochastic Navier-Stokes equations
    Flandoli, F
    Romito, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (06) : 2207 - 2241
  • [22] Stochastic Lagrangian Flows and the Navier-Stokes Equations
    Arnaudon, Marc
    Cruzeiro, Ana Bela
    Stochastic Analysis: A Series of Lectures, 2015, 68 : 55 - 75
  • [23] STOCHASTIC NAVIER-STOKES EQUATIONS ARE A COUPLED PROBLEM
    Rang, Joachim
    Matthies, Hermann G.
    COMPUTATIONAL METHODS IN MARINE ENGINEERING V (MARINE 2013), 2013, : 278 - 288
  • [24] Impulse control of stochastic Navier-Stokes equations
    Menaldi, JL
    Sritharan, SS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (02) : 357 - 381
  • [25] Stochastic Navier-Stokes equations for turbulent flows
    Mikulevicius, R
    Rozovskii, BL
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 35 (05) : 1250 - 1310
  • [26] Ergodicity for stochastic equations of Navier-Stokes type
    Brzezniak, Zdzislaw
    Komorowski, Tomasz
    Peszat, Szymon
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [27] Stochastic Navier-Stokes Equations for Compressible Fluids
    Breit, Dominic
    Hofmanova, Martina
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (04) : 1183 - 1250
  • [28] Stochastic Navier-Stokes Equations and Related Models
    Bianchi, Luigi Amedeo
    Flandoli, Franco
    MILAN JOURNAL OF MATHEMATICS, 2020, 88 (01) : 225 - 246
  • [29] Dynamic programming for the stochastic Navier-Stokes equations
    da Prato, G
    Debussche, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (02): : 459 - 475
  • [30] STATISTICAL SOLUTIONS OF STOCHASTIC NAVIER-STOKES EQUATIONS
    CAPINSKI, M
    CUTLAND, NJ
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (03) : 927 - 940