Transition-metal dichalcogenides with type-II Dirac fermions: Surface properties and application capabilities

被引:0
|
作者
D'Olimpio, G. [1 ]
机构
[1] Dept Phys & Chem Sci, Laquila, Italy
关键词
ADSORPTION; OXIDATION; COADSORPTION; MOLECULES; DEFECTS; WATER; MOS2;
D O I
10.1393/ncc/i2020-20113-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Among the various layered materials "beyond graphene", the class of transition-metal dichalcogenides MTe2 (M= Ni, Pd, Pt) is particularly interesting, due to the existence of bulk type-II Dirac fermions, arising from a tilted Dirac cone. The Dirac cone in these materials is located in the bulk, with inherently superior robustness to surface modifications compared to other Dirac materials, among which graphene, topological insulator and silicene. In addition, MTe2 also displays application capabilities in optoelectronics and catalysis. Here, with surface-science experiments and theory, we assess the surface properties of MTe2, including i) ambient stability, ii) chemical reactivity and iii) aging mechanisms. Remarkably, MTe2 shows outstanding tolerance to CO and stability in water environment. We also demonstrate that passivation in ambient atmosphere is achieved in less than 30 minutes with the TeO2 skin having a sub-nanometric thickness even alter one year in the air. The existence of Te vacancies leads to the enhancement of the surface chemical reactivity. These results pave the way toward the exploitation of this class of Dirac materials in optoelectronics and catalysis.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Fermi-crossing Type-II Dirac fermions and topological surface states in NiTe2
    Saumya Mukherjee
    Sung Won Jung
    Sophie F. Weber
    Chunqiang Xu
    Dong Qian
    Xiaofeng Xu
    Pabitra K. Biswas
    Timur K. Kim
    Laurent C. Chapon
    Matthew D. Watson
    Jeffrey B. Neaton
    Cephise Cacho
    Scientific Reports, 10
  • [32] Fermi-crossing Type-II Dirac fermions and topological surface states in NiTe2
    Mukherjee, Saumya
    Jung, Sung Won
    Weber, Sophie F.
    Xu, Chunqiang
    Qian, Dong
    Xu, Xiaofeng
    Biswas, Pabitra K.
    Kim, Timur K.
    Chapon, Laurent C.
    Watson, Matthew D.
    Neaton, Jeffrey B.
    Cacho, Cephise
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [33] Nanoribbon edges of transition-metal dichalcogenides: Stability and electronic properties
    Davelou, Daphne
    Kopidakis, Georgios
    Kaxiras, Efthimios
    Remediakis, Ioannis N.
    PHYSICAL REVIEW B, 2017, 96 (16)
  • [34] Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides
    Berkelbach, Timothy C.
    Reichman, David R.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 9, 2018, 9 : 379 - 396
  • [35] Interlayer excitons in transition-metal dichalcogenide heterostructures with type-II band alignment
    Meckbach, L.
    Huttner, U.
    Bannow, L. C.
    Stroucken, T.
    Koch, S. W.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (37)
  • [36] ELECTRONIC-PROPERTIES OF INTERCALATION COMPLEXES OF THE TRANSITION-METAL DICHALCOGENIDES
    FRIEND, RH
    YOFFE, AD
    ADVANCES IN PHYSICS, 1987, 36 (01) : 1 - 94
  • [37] ELECTRONIC-PROPERTIES OF INTERCALATION COMPOUNDS OF THE TRANSITION-METAL DICHALCOGENIDES
    FRIEND, RH
    REVUE DE CHIMIE MINERALE, 1982, 19 (4-5): : 467 - 484
  • [38] Excited-State Properties of Janus Transition-Metal Dichalcogenides
    Li, Fengping
    Wei, Wei
    Huang, Baibiao
    Dai, Ying
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (02): : 1667 - 1673
  • [39] AIR STABILITY AND ANTIFRICTION PROPERTIES OF INTERCALATED TRANSITION-METAL DICHALCOGENIDES
    SEMONOVKOBZAR, AA
    KULIKOV, LM
    AKSELRUD, LG
    ROMAKA, LP
    SENTYURIKHINA, LN
    TSYGANOVA, MK
    INORGANIC MATERIALS, 1993, 29 (06) : 965 - 968
  • [40] Conduction mechanism and thermoelectric properties of layered transition-metal dichalcogenides
    Koyano, M
    Emoto, H
    Yamamura, Y
    Katayama, S
    Tsuji, T
    PRICM 4: FORTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, VOLS I AND II, 2001, : 2169 - 2172