Note on generalized hypergeometric function

被引:6
|
作者
Rao, Snehal B. [1 ]
Shukla, A. K. [2 ]
机构
[1] Maharaja Sayajirao Univ Baroda, Dept Appl Math, Vadodara 390001, India
[2] SV Natl Inst Technol, Dept Appl Math & Humanities, Surat 395007, India
关键词
generalized hypergeometric function; integral representation; fractional integral and differential operators; 33C20; 33E20; 26A33;
D O I
10.1080/10652469.2013.773327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Virchenko and Rumiantseva [On the generalized associated legendre functions. Fract Cal Appl Anal. 2008; 11(2): 175- 185] gave another generalization F-2(1)tau,beta(a, b; c; z) of the hypergeometric function. In this paper, we give integral representations and differentiation formulae of F-2(1)tau,beta (a, b; c; z), alongwith relation of F-2(1)tau,beta (a, b; c; z) with the generalized Mittag-Leffler function E-alpha,beta(gamma,q)(z) [Shukla AK, Prajapati JC. On a generalization of Mittag-Leffler function and its properties. J Math Anal Appl. 2007; 336(2): 797-811.]. Further properties of the generalized hypergeometric function R-2(1)(a, b; c; t; z) [Virchenko N, Kalla SL, Al-Zamel A. Some results on a generalized hypergeometric function. Integral Transforms Spec Funct. 2001; 12(1): 89-100.], namely integral representation and differentiation formulae are also studied.
引用
收藏
页码:896 / 904
页数:9
相关论文
共 50 条