Composition of the lunar magma ocean constrained by the conditions for the crust formation

被引:17
|
作者
Sakai, R. [1 ]
Nagahara, H. [1 ]
Ozawa, K. [1 ]
Tachibana, S. [2 ]
机构
[1] Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan
[2] Hokkaido Univ, Dept Nat Hist Sci, Sapporo, Hokkaido 0600810, Japan
基金
日本学术振兴会;
关键词
Moon; Planetary formation; Abundances; interiors; CHEMICAL-COMPOSITION; SILICATE LIQUIDS; MOON; MODEL; ANORTHOSITE; ORIGIN; SURFACE; CRYSTALLIZATION; CONSTITUTION; PETROGENESIS;
D O I
10.1016/j.icarus.2013.10.031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The present study aims to constrain the composition of the initial lunar magma ocean (LMO) with fluid dynamic and thermodynamic consideration. A plausible range of the initial LMO composition is investigated by developing an incremental polybaric fractional crystallization model with variable fractionation efficiency to satisfy three conditions for the anorthosite crust formation: (1) the amount of anorthite crystallized from the LMO is abundant enough to form the crust with the observed thickness, (2) the Mg# (=Mg/(Mg + Fe)) of orthopyroxene crystallized with anorthite in the cooling LMO is consistent with that observed in the lunar highland rocks, ferroan anorthosite, and (3) crystallized anorthite separated to float in the turbulent LMO. A plausible range of FeO and Al2O3 contents of the bulk LMO is successfully constrained as a crescent region tight for FeO and loose for Al2O3. The FeO content must be higher than 1.3 times the bulk silicate Earth (BSE) and lower than 1.8 xBSE unless the Al2O3 content of the Moon is extremely higher than the Earth. These upper and lower limits for FeO are positively correlated with the initial Al2O3 content and fractionation efficiency. The FeO-rich LMO composition may suggest that the circum-Earth disk just after the giant impact of the Earth-Moon system formation was more oxidizing or the impactor was richer in FeO than the Earth's mantle. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:45 / 56
页数:12
相关论文
共 50 条
  • [21] Chemical composition of lunar meteorites and the lunar crust
    Demidova, S. I.
    Nazarov, M. A.
    Lorenz, C. A.
    Kurat, G.
    Brandstaetter, F.
    Ntaflos, Th.
    PETROLOGY, 2007, 15 (04) : 386 - 407
  • [22] Chemical composition of lunar meteorites and the lunar crust
    S. I. Demidova
    M. A. Nazarov
    C. A. Lorenz
    G. Kurat
    F. Brandstätter
    Th. Ntaflos
    Petrology, 2007, 15 : 386 - 407
  • [23] LUNAR CRUST - STRUCTURE AND COMPOSITION
    TOKSOZ, MN
    SUTTON, G
    EWING, M
    ANDERSON, K
    DAINTY, A
    NAKAMURA, Y
    DUENNEBIER, F
    DORMAN, J
    PRESS, F
    LAMMLEIN, D
    LATHAM, G
    SCIENCE, 1972, 176 (4038) : 1012 - +
  • [24] The very late-stage crystallization of the lunar magma ocean and the composition of immiscible urKREEP
    Zhang, Yishen
    Charlier, Bernard
    Krein, Stephanie B.
    Grove, Timothy L.
    Namur, Olivier
    Holtz, Francois
    EARTH AND PLANETARY SCIENCE LETTERS, 2024, 646
  • [25] Is lunar magma ocean (LMO) gone with the wind?
    Niu, Yaoling
    O'Hara, Michael J.
    NATIONAL SCIENCE REVIEW, 2016, 3 (01) : 12 - 15
  • [26] Is lunar magma ocean (LMO) gone with the wind?
    Yaoling Niu
    Michael J.O’Hara
    NationalScienceReview, 2016, 3 (01) : 12 - 15
  • [27] The chlorine isotope fingerprint of the lunar magma ocean
    Boyce, Jeremy W.
    Treiman, Allan H.
    Guan, Yunbin
    Ma, Chi
    Eiler, John M.
    Gross, Juliane
    Greenwood, James P.
    Stolper, Edward M.
    SCIENCE ADVANCES, 2015, 1 (08):
  • [28] Isotopic evidence for a young lunar magma ocean
    Borg, Lars E.
    Gaffney, Amy M.
    Kruijer, Thomas S.
    Marks, Naomi A.
    Sio, Corliss K.
    Wimpenny, Josh
    EARTH AND PLANETARY SCIENCE LETTERS, 2019, 523
  • [29] A young solidification age for the lunar magma ocean
    Gaffney, Amy M.
    Borg, Lars E.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2014, 140 : 227 - 240
  • [30] LUNAR AND TERRESTRIAL CRUST FORMATION
    WALKER, D
    JOURNAL OF GEOPHYSICAL RESEARCH, 1983, 88 : B17 - B25