Numerical study of hydrogen-oxygen flame acceleration and deflagration to detonation transition in combustion light gas gun

被引:11
|
作者
Zhou, Fei [1 ]
Liu, Ning [1 ]
Zhang, Xiangyan [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
关键词
Combustion light gas gun; Hydrogen explosion; DDT; LES; NO-SLIP WALLS; AIR MIXTURE; DDT; CHANNELS; SIMULATION; PROPAGATION; EXPLOSIONS; IGNITION; LES;
D O I
10.1016/j.ijhydene.2017.11.134
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A large eddy model with detailed chemical reaction mechanism is developed to investigate the interior ballistic process of the combustion light gas gun (CLGG). Flame acceleration and deflagration to detonation transition process with high initial pressure and low initial temperature hydrogen oxygen mixture in CLGG is numerically studied. Simulation results indicate that the hydrogen oxygen flame propagation experiences an exponential acceleration stage, a nearly uniform propagation stage and a fast reacceleration stage. Detonation can be triggered through two different mechanisms, which are the amplification between the overlapped shock wave at flame surface, and the elevated flame velocity and shock strength caused by local explosions. Reflected shock waves play an important role in the suppression of the flame propagation when the flame front is close to the chamber throat, leading to a deceleration of the deflagration flame. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:5405 / 5414
页数:10
相关论文
共 50 条
  • [11] Study on hydrogen ignition safety based on flame acceleration and deflagration to detonation transition criteria
    Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
    Yuanzineng Kexue Jishu, 2006, 5 (563-569):
  • [12] Deflagration-to-detonation transition in an unconfined space: Expanding hydrogen-oxygen flames
    Koksharov, Andrey
    Kagan, Leonid
    Sivashinsky, Gregory
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (03) : 3505 - 3511
  • [13] Numerical simulation of flame acceleration and deflagration-to-detonation transition of ethylene in channels
    Wang, Cheng
    Zhao, Yongyao
    Zhang, Bo
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2016, 43 : 120 - 126
  • [14] Numerical study on flame acceleration and deflagration-to-detonation transition: Spatial distribution of solid obstacles
    Wang, Jiabao
    Li, Tong
    Ji, Shaoqiu
    Nie, Yunxi
    Jiang, Xi Zhuo
    Zhu, Yuejin
    PHYSICS OF FLUIDS, 2024, 36 (08)
  • [15] Numerical Modeling of Flame Acceleration and Transition from Deflagration to Detonation Using OpenFOAM®
    Azadboni, Reza Khodadadi
    Wen, Jennifer X.
    Heidari, Ali
    OPENFOAM(R), 2019, : 357 - 372
  • [16] Study on inhomogeneous hydrogen-air mixture flame acceleration and deflagration-to-detonation transition
    Yang, Guogang
    Sheng, Zhonghua
    Li, Shian
    Shen, Qiuwan
    Sun, Han
    Xu, Zhuangzhuang
    PHYSICS OF FLUIDS, 2024, 36 (02)
  • [17] Strong flame acceleration and detonation limit of hydrogen-oxygen mixture at cryogenic temperature
    Shen, Xiaobo
    Fu, Wenju
    Liang, Wenkai
    Wen, Jennifer X.
    Liu, Haifeng
    Law, Chung K.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (03) : 2967 - 2977
  • [18] Numerical study on characteristics of hydrogen deflagration and detonation in the combustion tube
    Liu, Bo
    Wu, Shihao
    Shi, Xin
    Zhang, Yapei
    Wu, Yingwei
    ANNALS OF NUCLEAR ENERGY, 2025, 217
  • [19] Numerical simulation of flame acceleration and DDT(deflagration to detonation transition) in hydrogen-air mixtures with concentration gradients
    Liu, Yang
    Yang, Xing
    Fu, Zhixi
    Chen, Peng
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021,
  • [20] Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients
    Wang, C. J.
    Wen, J. X.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (11) : 7657 - 7663