Simulation-based optimisation of a sustainable recovery network for Waste from Electrical and Electronic Equipment (WEEE)

被引:40
|
作者
Shokohyar, S. [1 ]
Mansour, S. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Ind Engn & Management Syst, Tehran, Iran
关键词
WEEE; simulation optimisation; reverse logistic; sustainability; MANAGEMENT; LOCATION; SYSTEM; PLANTS;
D O I
10.1080/0951192X.2012.731613
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In recent years, developing countries are facing huge challenges in the management of Waste from Electrical and Electronic Equipment' (WEEE). Waste from electrical and electronic equipment contains hazardous materials that may have an impact on human environment and health if not properly managed. Therefore, governments should be concerned and be seeking ways to design the recovery and disposal networks to manage WEEE waste treatment strategies. The objective of this paper is to design a country level WEEE recovery network based on sustainable development in which economic, environmental and social issues are considered. A simulation optimisation model is developed to determine the best locations for the collection centres and also recycling plants for managing total WEEE in Iran, so that the government can simultaneously perform the trade-off between environmental issues and economical and social impacts. The proposed model was examined through an illustrative case study from Iran's current WEEE situation.
引用
收藏
页码:487 / 503
页数:17
相关论文
共 50 条
  • [21] Strategies for Quantifying Metal Recovery from Waste Electrical and Electronic Equipment (WEEE/E-waste) Using Mathematical Approach
    Uma Sakthivel
    G. Swaminathan
    J. Jeya Jenisha Anis
    Process Integration and Optimization for Sustainability, 2022, 6 : 781 - 790
  • [22] Copper recovery from waste of electrical and electronic equipment
    Kljajin, M.
    Kozak, D.
    Ivandic, Z.
    Annals of DAAAM for 2003 & Proceedings of the 14th International DAAAM Symposium: INTELLIGENT MANUFACTURING & AUTOMATION: FOCUS ON RECONSTRUCTION AND DEVELOPMENT, 2003, : 231 - 232
  • [23] Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management
    Schlummer, Martin
    Gruber, Ludwig
    Maeurer, Andreas
    Woiz, Gerd
    van Eldik, Rudi
    CHEMOSPHERE, 2007, 67 (09) : 1866 - 1876
  • [24] Technical solutions to improve global sustainable management of waste electrical and electronic equipment (WEEE) in the EU and China
    Long E.
    Kokke S.
    Lundie D.
    Shaw N.
    Ijomah W.
    Kao C.-C.
    Journal of Remanufacturing, 6 (1)
  • [25] Bioleaching metals from waste electrical and electronic equipment (WEEE) by Aspergillus niger: a review
    Li, Jingying
    Xu, Tong
    Liu, Jinyuan
    Wen, Jiangxian
    Gong, Shuli
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (33) : 44622 - 44637
  • [26] Recycling of PBDEs containing plastics from waste electrical and electronic equipment (WEEE): A review
    Li, Ying
    Li, Jinhui
    Wang, Lihui
    2013 IEEE 10TH INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE), 2013, : 407 - 412
  • [27] Processing and properties of engineering plastics recycled from waste electrical and electronic equipment (WEEE)
    Tarantili, P. A.
    Mitsakaki, A. N.
    Petoussi, M. A.
    POLYMER DEGRADATION AND STABILITY, 2010, 95 (03) : 405 - 410
  • [28] An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)
    Stenvall, Erik
    Tostar, Sandra
    Boldizar, Antal
    Foreman, Mark R. St J.
    Moller, Kenneth
    WASTE MANAGEMENT, 2013, 33 (04) : 915 - 922
  • [29] Bioleaching metals from waste electrical and electronic equipment (WEEE) by Aspergillus niger: a review
    Jingying Li
    Tong Xu
    Jinyuan Liu
    Jiangxian Wen
    Shuli Gong
    Environmental Science and Pollution Research, 2021, 28 : 44622 - 44637
  • [30] Evaluation of the electrical and electronic equipment waste (WEEE) generation in a private university
    Panizzon, Tiago
    Reichert, Geraldo Antonio
    Schneider, Vania Elisabete
    ENGENHARIA SANITARIA E AMBIENTAL, 2017, 22 (04) : 625 - 635