Numerical challenges for turbulence computation: Statistical equipartition and the method of spectral reduction

被引:0
|
作者
Bowman, JC [1 ]
Shadwick, BA [1 ]
Morrison, PJ [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
来源
关键词
homogeneous turbulence; statistical closures; spectral reduction; stiff differential equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical issues in the implementation of spectral reduction, a new method for the computation of statistical moments of homogeneous turbulence, are examined. The method implements a coarse graining in Fourier space and exploits the fact that statistical moments are much smoother functions of wave number than the underlying fluctuating velocities. A notable feature of this turbulence model is the existence of a control parameter (bin size) that can be varied to increase the accuracy of the approximation. The inviscid version of spectral reduction satisfies a Liouville theorem and yields statistical equipartition solutions. However, if the wavenumber bins are of nonuniform size (as is desirable for efficiency), an additional bin-dependent rescaling of time by the relative bin area must be introduced to obtain the correct equipartition. This rescaling of the time derivative term drastically increases the stiffness of the spectrally reduced equations. The prospect of developing an implicit nonlinear integrator for this highly stiffened convection problem is examined.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 50 条
  • [11] STATISTICAL SPECTRAL ANALYSIS OF EEG SIGNAL - COMPUTATION OF NEW STATISTICAL SPECTRAL PARAMETERS
    GOLDBERG, P
    ETEVENON, P
    REVUE D INFORMATIQUE MEDICIALE, 1973, 4 (01): : 23 - 30
  • [12] NUMERICAL COMPUTATION OF PARTICLES-TURBULENCE INTERACTION
    MCLAUGHLIN, JB
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1994, 20 : 211 - 232
  • [13] Numerical computation of collisionless drift Alfven turbulence
    Jenko, F
    Scott, BD
    PHYSICS OF PLASMAS, 1999, 6 (07) : 2705 - 2713
  • [14] Numerical computation of collisionless drift wave turbulence
    Jenko, F
    Scott, BD
    PHYSICS OF PLASMAS, 1999, 6 (06) : 2418 - 2424
  • [15] OPTICAL NUMERICAL COMPUTATION IN THE SPECTRAL DOMAIN
    CAULFIELD, HJ
    MUELLER, PF
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 431 : 209 - 214
  • [16] Numerical simulation of two dimensional isotropic turbulence by the spectral lattice Boltzmann method
    Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaimachi, Nadaku, Kobeshi, Hyogo, 657-8501, Japan
    Nihon Kikai Gakkai Ronbunshu, B, 2008, 10 (2132-2137):
  • [17] Statistical Properties of the Population of the Galactic Center Filaments: the Spectral Index and Equipartition Magnetic Field
    Yusef-Zadeh, F.
    Arendt, R. G.
    Wardle, M.
    Heywood, I
    Cotton, W.
    Camilo, F.
    ASTROPHYSICAL JOURNAL LETTERS, 2022, 925 (02)
  • [18] A SPECTRAL METHOD FOR FIELD COMPUTATION
    STEELE, CW
    IEEE TRANSACTIONS ON MAGNETICS, 1983, 19 (06) : 2296 - 2299
  • [19] Collocation Spectral Method for Numerical Computation of Electric Potential Distribution Along Polluted Insulator
    Nouir-Masmoudi, Haifa
    Kaddeche, Slim
    Dhahbi-Megriche, Nabila
    Beroual, Abderrahmane
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2023, 30 (06) : 2714 - 2723
  • [20] Numerical Computation of Helical Waves in a Finite Circular Cylinder using Chebyshev Spectral Method
    Lyu, Xing-Liang
    Su, Wei -Dong
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024, 16 (02) : 331 - 354