Hybridizing Li@Mn6 and Sb@Ni6 superstructure units to tune the electrochemical performance of Li-rich layered oxides

被引:17
|
作者
Li, Yiwei [1 ]
Xie, Lin [2 ]
Zheng, Ze [1 ]
Yin, Zu-Wei [1 ]
Li, Jianyuan [1 ,4 ]
Weng, Mouyi [1 ]
Liu, Jiajie [1 ]
Hu, Jiangtao [1 ]
Yang, Kai [1 ]
Qian, Guoyu [1 ]
Cao, Bo [1 ]
Li, Zhibo [1 ]
Xu, Shenyang [1 ]
Zhao, Wenguang [1 ]
Li, Shunning [1 ]
Sun, Junliang [4 ]
Zhang, Mingjian [1 ,3 ]
Pan, Feng [1 ]
机构
[1] Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Univ Chicago, Ctr Adv Radiat Source ChemMatCARS, Argonne, IL 60439 USA
[4] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
基金
国家重点研发计划;
关键词
Superstructure unit; Local oxygen environment; Composited Li-Rich layered cathode; Electronic structure calculation; POSITIVE ELECTRODE MATERIALS; CATHODE MATERIALS; LI2MNO3; COMPONENT; ION BATTERIES; LITHIUM; CAPACITY; SURFACE; TRANSFORMATION;
D O I
10.1016/j.nanoen.2020.105157
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li@Mn-6 superstructure units from the model compound Li2MnO3, i.e., six MnO6 octahedra linked like a ring (Mn6) with a central LiO6 octahedron, could provide extra capacity when composited with other transition metal octahedra (TMO6) structure units in Li and Mn-rich TM layered oxides, xLi(2)MnO(3)center dot(1-x)LiTMO2, one of the most promising high-energy-density cathodes. Nevertheless, it suffers serious capacity and voltage fade due to the unstable local oxygen environment in the basic superstructure unit Li@Mn-6. Herein, a new Li-rich layered oxide cathode, Li(Li1/6Mn1/3Ni1/3Sb1/6)O-2, was designed and synthesized by compositing Li@Mn-6 with a similar superstructure unit Sb@Ni-6. Complementary structural/chemical analysis combining with the electronic structure calculations reveal that, the uniform mixing of these two superstructure units at the atomic level has been firstly accomplished in TM layers, which introduces a large amount of boundaries between Li@Mn-6 and Sb@Ni-6 superunits, thus greatly enriching the local oxygen environments, and reducing the energy barrier of Li+ diffusion. Therefore, the better electrochemical performance, especially the superb cycling stability with the larger capacity (double that of Li(Ni2/3Sb1/3)O-2) is implemented. It provides another route to design new Li-rich layered oxides with the better cycling stability by modifying local oxygen environments.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] The Effect of Polyanion-Doping on the Structure and Electrochemical Performance of Li-Rich Layered Oxides as Cathode for Lithium-Ion Batteries
    Zhang, Hong-Zhou
    Li, Fang
    Pan, Gui-Ling
    Li, Guo-Ran
    Gao, Xue-Ping
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1899 - A1904
  • [42] Electrochemical performances of Li-rich Mn-based layered structure cathodes optimized by compositional design
    Leilei Liu
    Guobiao Su
    Xu Cheng
    Han Han
    Wenjiang Qiang
    Bingxin Huang
    Journal of Solid State Electrochemistry, 2022, 26 : 2379 - 2388
  • [43] Surface Structural Transition Induced by Gradient Polyanion-Doping in Li-Rich Layered Oxides: Implications for Enhanced Electrochemical Performance
    Zhao, Ying
    Liu, Jiatu
    Wang, Shuangbao
    Ji, Ran
    Xia, Qingbing
    Ding, Zhengping
    Wei, Weifeng
    Liu, Yong
    Wang, Peng
    Ivey, Douglas G.
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (26) : 4760 - 4767
  • [44] Electrochemical performances of Li-rich Mn-based layered structure cathodes optimized by compositional design
    Liu, Leilei
    Su, Guobiao
    Cheng, Xu
    Han, Han
    Qiang, Wenjiang
    Huang, Bingxin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (11) : 2379 - 2388
  • [45] Manipulating the Local Electronic Structure in Li-Rich Layered Cathode Towards Superior Electrochemical Performance
    Zheng, Hongfei
    Zhang, Chenying
    Zhang, Yinggan
    Lin, Liang
    Liu, Pengfei
    Wang, Laisen
    Wei, Qiulong
    Lin, Jie
    Sa, Baisheng
    Xie, Qingshui
    Peng, Dong-Liang
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (30)
  • [46] Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode
    Song, Bohang
    Zhou, Cuifeng
    Chen, Yu
    Liu, Zongwen
    Lai, Man On
    Xue, Junmin
    Lu, Li
    RSC ADVANCES, 2014, 4 (83): : 44244 - 44252
  • [47] Boosting the Electrochemical Performance of a Spinel Cathode with the In Situ Transformed Allogenic Li-Rich Layered Phase
    Yuan, Shenghua
    Guo, Jian
    Ma, Yue
    Zhang, Hongzhou
    Song, Dawei
    Shi, Xixi
    Zhang, Lianqi
    LANGMUIR, 2021, 37 (47) : 13941 - 13951
  • [48] Tuning Electrochemical Performance of Li-Rich Layered Cathode Materials with a Solid Phase Fusion Strategy
    Li, Xiangnan
    Zhou, Qibin
    Yang, Shuaijia
    Ge, Ming
    Zhang, Huishuang
    Yin, Yanhong
    Yang, Shuting
    LANGMUIR, 2022, 38 (37) : 11219 - 11226
  • [49] Phase Evolution of Li-Rich Layered Li-Mn-Ni-(Al)-O Cathode Materials upon Heat Treatments in Air
    Grins, Jekabs
    Jaworski, Aleksander
    Josang, Leif Olav
    Biendicho, Jordi Jacas
    Svensson, Gunnar
    MATERIALS, 2024, 17 (24)
  • [50] A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion
    Ma, Jin
    Li, Biao
    An, Li
    Wei, Hang
    Wang, Xiayan
    Yu, Pingrong
    Xia, Dingguo
    JOURNAL OF POWER SOURCES, 2015, 277 : 393 - 402