Hybridizing Li@Mn6 and Sb@Ni6 superstructure units to tune the electrochemical performance of Li-rich layered oxides

被引:17
|
作者
Li, Yiwei [1 ]
Xie, Lin [2 ]
Zheng, Ze [1 ]
Yin, Zu-Wei [1 ]
Li, Jianyuan [1 ,4 ]
Weng, Mouyi [1 ]
Liu, Jiajie [1 ]
Hu, Jiangtao [1 ]
Yang, Kai [1 ]
Qian, Guoyu [1 ]
Cao, Bo [1 ]
Li, Zhibo [1 ]
Xu, Shenyang [1 ]
Zhao, Wenguang [1 ]
Li, Shunning [1 ]
Sun, Junliang [4 ]
Zhang, Mingjian [1 ,3 ]
Pan, Feng [1 ]
机构
[1] Peking Univ, Sch Adv Mat, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Univ Chicago, Ctr Adv Radiat Source ChemMatCARS, Argonne, IL 60439 USA
[4] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
基金
国家重点研发计划;
关键词
Superstructure unit; Local oxygen environment; Composited Li-Rich layered cathode; Electronic structure calculation; POSITIVE ELECTRODE MATERIALS; CATHODE MATERIALS; LI2MNO3; COMPONENT; ION BATTERIES; LITHIUM; CAPACITY; SURFACE; TRANSFORMATION;
D O I
10.1016/j.nanoen.2020.105157
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li@Mn-6 superstructure units from the model compound Li2MnO3, i.e., six MnO6 octahedra linked like a ring (Mn6) with a central LiO6 octahedron, could provide extra capacity when composited with other transition metal octahedra (TMO6) structure units in Li and Mn-rich TM layered oxides, xLi(2)MnO(3)center dot(1-x)LiTMO2, one of the most promising high-energy-density cathodes. Nevertheless, it suffers serious capacity and voltage fade due to the unstable local oxygen environment in the basic superstructure unit Li@Mn-6. Herein, a new Li-rich layered oxide cathode, Li(Li1/6Mn1/3Ni1/3Sb1/6)O-2, was designed and synthesized by compositing Li@Mn-6 with a similar superstructure unit Sb@Ni-6. Complementary structural/chemical analysis combining with the electronic structure calculations reveal that, the uniform mixing of these two superstructure units at the atomic level has been firstly accomplished in TM layers, which introduces a large amount of boundaries between Li@Mn-6 and Sb@Ni-6 superunits, thus greatly enriching the local oxygen environments, and reducing the energy barrier of Li+ diffusion. Therefore, the better electrochemical performance, especially the superb cycling stability with the larger capacity (double that of Li(Ni2/3Sb1/3)O-2) is implemented. It provides another route to design new Li-rich layered oxides with the better cycling stability by modifying local oxygen environments.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Sb@Ni6 superstructure units stabilize Li-rich layered cathode in the wide voltage window
    Cao, Bo
    Li, Yiwei
    Zhang, Mingjian
    Cheng, Ningyan
    Shen, Ming
    Hu, Bingwen
    Li, Jianyuan
    Li, Zhibo
    Xu, Shenyang
    Zhao, Wenguang
    Yang, Ni
    Sun, Junliang
    Dou, Shixue
    Ren, Yang
    Chen, Haibiao
    Yin, Liang
    Pan, Feng
    JOURNAL OF POWER SOURCES, 2022, 551
  • [2] Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathode
    Li, Yiwei
    Xu, Shenyang
    Zhao, Wenguang
    Chen, Zhefeng
    Chen, Zhaoxi
    Li, Shunning
    Hu, Jiangtao
    Cao, Bo
    Li, Jianyuan
    Zheng, Shisheng
    Chen, Ziwei
    Zhang, Taolue
    Zhang, Mingjian
    Pan, Feng
    ENERGY STORAGE MATERIALS, 2022, 45 : 422 - 431
  • [3] Modifying Li@Mn6 Superstructure Units by Al Substitution to Enhance the Long-Cycle Performance of Co-Free Li-Rich Cathode
    Li, Zhibo
    Li, Yiwei
    Zhang, Mingjian
    Yin, Zu-Wei
    Yin, Liang
    Xu, Shenyang
    Zuo, Changjian
    Qi, Rui
    Xue, Haoyu
    Hu, Jiangtao
    Cao, Bo
    Chu, Mihai
    Zhao, Wenguang
    Ren, Yang
    Xie, Lin
    Ren, Guoxi
    Pan, Feng
    ADVANCED ENERGY MATERIALS, 2021, 11 (37)
  • [4] Delocalized Li@Mn6 superstructure units enable layer stability of high-performance Mn-rich cathode materials
    Huang, Weiyuan
    Lin, Cong
    Qiu, Jimin
    Li, Shunning
    Chen, Zhefeng
    Chen, Haibiao
    Zhao, Wenguang
    Ren, Guoxi
    Li, Xiaoyuan
    Zhang, Mingjian
    Pan, Feng
    CHEM, 2022, 8 (08): : 2163 - 2178
  • [5] Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials
    Billaud, Juliette
    Sheptyakov, Denis
    Sallard, Sebastien
    Leanza, Daniela
    Talianker, Michael
    Grinblat, Judith
    Sclar, Hadar
    Aurbach, Doron
    Novak, Petr
    Villevieille, Claire
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (25) : 15215 - 15224
  • [6] The Effects of Trace Yb Doping on the Electrochemical Performance of Li-Rich Layered Oxides
    Bao, Liying
    Yang, Zeliang
    Chen, Lai
    Su, Yuefeng
    Lu, Yun
    Li, Weikang
    Yuan, Feiyu
    Dong, Jinyang
    Fang, Youyou
    Ji, Zhe
    Shi, Chen
    Feng, Wu
    CHEMSUSCHEM, 2019, 12 (10) : 2294 - 2301
  • [7] Achieving High-Voltage Stability in Li-Rich Ni-Rich Oxides with Local W/Ni(Li) Superstructure
    Gao, Xu
    Li, Biao
    Rousse, Gwenaelle
    Morozov, Anatolii V.
    Deschamps, Michael
    Elkaim, Erik
    Zhang, Leiting
    Kummer, Kurt
    Abakumov, Artem M.
    Tarascon, Jean-Marie
    ADVANCED ENERGY MATERIALS, 2024,
  • [8] Surface-Diluted LiMn6 Superstructure Units Utilizing PO43- Confined Ni-Doping Sites to Stabilize Li-Rich Layered Oxides
    Cheng, Wenhua
    Liu, Qingcui
    Ding, Juan
    Wang, Xingchao
    Wang, Lei
    Wang, Jiulin
    Zhang, Wenjun
    Huang, Yudai
    SMALL, 2023, 19 (34)
  • [9] Improved electrochemical performance of SiO2-coated Li-rich layered oxides-Li1.2Ni0.13Mn0.54Co0.13O2
    Jeffin James Abraham
    Umair Nisar
    Haya Monawwar
    Aisha Abdul Quddus
    R. A. Shakoor
    Mohamed I. Saleh
    Ramazan Kahraman
    Siham Al-Qaradawi
    Amina S. Aljaber
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 19475 - 19486
  • [10] Improved electrochemical performance of SiO2-coated Li-rich layered oxides-Li1.2Ni0.13Mn0.54Co0.13O2
    James Abraham, Jeffin
    Nisar, Umair
    Monawwar, Haya
    Abdul Quddus, Aisha
    Shakoor, R. A.
    Saleh, Mohamed I.
    Kahraman, Ramazan
    Al-Qaradawi, Siham
    Aljaber, Amina S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (21) : 19475 - 19486