SINGULARITY REMOVABILITY AT BRANCH POINTS FOR WILLMORE SURFACES

被引:20
|
作者
Bernard, Yann [1 ]
Riviere, Tristan [2 ]
机构
[1] Univ Freiburg, Inst Math, D-79004 Freiburg, Germany
[2] ETH Zentrum, Dept Math, CH-8093 Zurich, Switzerland
关键词
D O I
10.2140/pjm.2013.265.257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a branched Willmore surface immersed in R-m >= 3 with square-integrable second fundamental form. We develop around each branch point local asymptotic expansions for the Willmore immersion, its first, and its second derivatives. Our expansions are given in terms of new integer-valued residues which are computed as circulation integrals around the branch point. We deduce explicit "point removability" conditions guaranteeing that the immersion is smooth through the branch point. These conditions are new, even in codimension one.
引用
收藏
页码:257 / 311
页数:55
相关论文
共 50 条
  • [11] Sequences of willmore surfaces
    Leschke, Katrin
    Pedit, Franz
    MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (01) : 113 - 122
  • [12] A method to exclude branch points of minimal surfaces
    Wienholtz, D
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 7 (03) : 219 - 247
  • [13] The Willmore functional of surfaces
    CHEN Jing-yi
    Applied Mathematics:A Journal of Chinese Universities, 2013, (04) : 485 - 493
  • [14] Constrained Willmore Surfaces
    Soliman, Yousuf
    Chern, Albert
    Diamanti, Olga
    Knoeppel, Felix
    Pinkall, Ulrich
    Schroeder, Peter
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [15] The Willmore functional of surfaces
    CHEN Jing-yi
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2013, 28 (04) : 485 - 493
  • [16] Willmore surfaces in Sn
    Li, HZ
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (02) : 203 - 213
  • [17] Constrained Willmore surfaces
    Christoph Bohle
    G. Paul Peters
    Ulrich Pinkall
    Calculus of Variations and Partial Differential Equations, 2008, 32 : 263 - 277
  • [18] Sequences of Willmore surfaces
    Katrin Leschke
    Franz Pedit
    Mathematische Zeitschrift, 2008, 259 : 113 - 122
  • [19] Constrained Willmore surfaces
    Bohle, Christoph
    Peters, G. Paul
    Pinkall, Ulrich
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (02) : 263 - 277
  • [20] Willmore Surfaces in Sn
    Haizhong Li
    Annals of Global Analysis and Geometry, 2002, 21 : 203 - 213