Statistical Selection of Biological Models for Genome-Wide Association Analyses
被引:0
|
作者:
Bi, Wenjian
论文数: 0引用数: 0
h-index: 0
机构:
St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USASt Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
Bi, Wenjian
[1
]
Kang, Guolian
论文数: 0引用数: 0
h-index: 0
机构:
St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USASt Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
Kang, Guolian
[1
]
Pounds, Stanley B.
论文数: 0引用数: 0
h-index: 0
机构:
St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USASt Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
Pounds, Stanley B.
[1
]
机构:
[1] St Jude Childrens Res Hosp, Dept Biostat, 332 N Lauderdale St, Memphis, TN 38105 USA
Genome-wide association studies have discovered many biologically important associations of genes with phenotypes. Typically, genome-wide association analyses formally test the association of each genetic feature (SNP, CNV, etc) with the phenotype of interest and summarize the results with multiplicity-adjusted p-values. However, very small p-values only provide evidence against the null hypothesis of no association without indicating which biological model best explains the observed data. Correctly identifying a specific biological model may improve the scientific interpretation and can be used to more effectively select and design a follow-up validation study. Thus, statistical methodology to identify the correct biological model for a particular genotype-phenotype association can be very useful to investigators. Here, we propose a general statistical method to summarize how accurately each of five biological models (null, additive, dominant, recessive, co-dominant) represents the data observed for each variant in a GWAS study. We show that the new method stringently controls the false discovery rate and asymptotically selects the correct biological model. Simulations of two-stage discovery-validation studies show that the new method has these properties and that its validation power is similar to or exceeds that of simple methods that use the same statistical model for all SNPs. Example analyses of three data sets also highlight these advantages of the new method. An R package is freely available at www.stjuderesearch.org/site/depts/biostats/software.
机构:
Xuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI 48109 USAXuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
Zeng, Ping
Hao, Xingjie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI 48109 USAXuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
Hao, Xingjie
Zhou, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI 48109 USAXuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
机构:
Univ Sao Paulo, Escola Super Agr Luiz Queiroz, Dept Zootecnia, Ave Padua Dias 11, BR-13418900 Piracicaba, SP, BrazilUniv Sao Paulo, Escola Super Agr Luiz Queiroz, Dept Zootecnia, Ave Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil
Nedel Pertile, Simone Fernanda
Fonseca e Silva, Fabyano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Vicosa, Dept Zootecn, Rua PH Rolfs Ctr, BR-36570000 Vicosa, MG, BrazilUniv Sao Paulo, Escola Super Agr Luiz Queiroz, Dept Zootecnia, Ave Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil
Fonseca e Silva, Fabyano
Salvian, Mayara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Super Agr Luiz Queiroz, Dept Zootecnia, Ave Padua Dias 11, BR-13418900 Piracicaba, SP, BrazilUniv Sao Paulo, Escola Super Agr Luiz Queiroz, Dept Zootecnia, Ave Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil
Salvian, Mayara
Mourao, Gerson Barreto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Super Agr Luiz Queiroz, Dept Zootecnia, Ave Padua Dias 11, BR-13418900 Piracicaba, SP, BrazilUniv Sao Paulo, Escola Super Agr Luiz Queiroz, Dept Zootecnia, Ave Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil
机构:
NCI, Div Canc Epidemiol & Genet, Rockville, MD USANCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Yu, Kai
Wang, Zhaoming
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Natl Canc Inst Frederick, SAIC Frederick Inc, Advanced Technol Program, Core Genotyping Facility, Frederick, MD USANCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Wang, Zhaoming
Li, Qizhai
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R ChinaNCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Li, Qizhai
Wacholder, Sholom
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Rockville, MD USANCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Wacholder, Sholom
Hunter, David J.
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Harvard Sch Publ Hlth, Dept Epidemiol, Program Mol & Genet Epidemiol, Boston, MA USANCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Hunter, David J.
Hoover, Robert N.
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Rockville, MD USANCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Hoover, Robert N.
Chanock, Stephen
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Rockville, MD USANCI, Div Canc Epidemiol & Genet, Rockville, MD USA
Chanock, Stephen
Thomas, Gilles
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Div Canc Epidemiol & Genet, Rockville, MD USANCI, Div Canc Epidemiol & Genet, Rockville, MD USA