Feature-Flow Interpretation of Deep Convolutional Neural Networks

被引:9
|
作者
Cui, Xinrui [1 ]
Wang, Dan [1 ]
Wang, Z. Jane [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Visualization; Computational modeling; Perturbation methods; Convolutional neural networks; Medical services; Birds; Model interpretability; feature-flow; sparse representation;
D O I
10.1109/TMM.2020.2976985
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite the great success of deep convolutional neural networks (DCNNs) in computer vision tasks, their black-box aspect remains a critical concern. The interpretability of DCNN models has been attracting increasing attention. In this work, we propose a novel model, Feature-fLOW INterpretation (FLOWIN) model, to interpret a DCNN by its feature-flow. The FLOWIN can express deep-layer features as a sparse representation of shallow-layer features. Based on that, it distills the optimal feature-flow for the prediction of a given instance, starting from deep layers to shallow layers. Therefore, the FLOWIN can provide an instance-specific interpretation, which presents its feature-flow units and their interpretable meanings for its network decision. The FLOWIN can also give the quantitative interpretation in which the contribution of each flow unit in different layers is used to interpret the net decision. From the class-level view, we can further understand networks by studying feature-flows within and between classes. The FLOWIN not only provides the visualization of the feature-flow but also studies feature-flow quantitatively by investigating its density and similarity metrics. In our experiments, the FLOWIN is evaluated on different datasets and networks by quantitative and qualitative ways to show its interpretability.
引用
收藏
页码:1847 / 1861
页数:15
相关论文
共 50 条
  • [21] DeepECG: Image-based electrocardiogram interpretation with deep convolutional neural networks
    Li, Changling
    Zhao, Hang
    Lu, Wei
    Leng, Xiaochang
    Wang, Li
    Lin, Xintan
    Pan, Yibin
    Jiang, Wenbing
    Jiang, Jun
    Sun, Yong
    Wang, Jianan
    Xiang, Jianping
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
  • [22] Adaptive Feature Aggregation in Deep Multi-Task Convolutional Neural Networks
    Cui, Chaoran
    Shen, Zhen
    Huang, Jin
    Chen, Meng
    Xu, Mingliang
    Wang, Meng
    Yin, Yilong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2133 - 2144
  • [23] Deep Adaptive Feature Aggregation in Multi-task Convolutional Neural Networks
    Shen, Zhen
    Cui, Chaoran
    Huang, Jin
    Zong, Jian
    Chen, Meng
    Yin, Yilong
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2213 - 2216
  • [24] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [25] Feature Extraction and Fusion Using Deep Convolutional Neural Networks for Face Detection
    Lu, Xiaojun
    Duan, Xu
    Mao, Xiuping
    Li, Yuanyuan
    Zhang, Xiangde
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [26] Feature-Selecting Based Hashing via Deep Convolutional Neural Networks
    Zheng, Honghe
    Ma, Ran
    An, Ping
    Li, Tong
    DIGITAL TV AND MULTIMEDIA COMMUNICATION, 2019, 1009 : 146 - 155
  • [27] Deep Convolutional Neural Networks for Feature Extraction of Images Generated from Complex Networks Topologies
    Xu, Ye
    Chi, Yun
    Tian, Ye
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 103 (01) : 327 - 338
  • [28] Deep Convolutional Neural Networks for Feature Extraction of Images Generated from Complex Networks Topologies
    Ye Xu
    Yun Chi
    Ye Tian
    Wireless Personal Communications, 2018, 103 : 327 - 338
  • [29] Convolutional Neural Networks and Feature Fusion for Flow Pattern Identification of the Subsea Jumper
    Lin, Shanying
    Xu, Jialu
    Liu, Shengnan
    Ong, Muk Chen
    Li, Wenhua
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [30] Hyperspectral Remote Sensing Images Deep Feature Extraction Based on Mixed Feature and Convolutional Neural Networks
    Liu, Jing
    Yang, Zhe
    Liu, Yi
    Mu, Caihong
    REMOTE SENSING, 2021, 13 (13)