Computation of 3-D sensitivity coefficients in magnetic induction tomography using boundary integral equations and radial basis functions

被引:5
|
作者
Pham, M. H. [1 ,2 ]
Peyton, A. J. [3 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
[2] Natl ICT Australia, Melbourne, Vic 3010, Australia
[3] Univ Manchester, Sch Elect & Elect Engn, Manchester M60 1QD, Lancs, England
关键词
boundary integral equations; eddy current; electromagnetic; magnetic induction tomography; method of moments; radial basis function; sensitivity coefficients;
D O I
10.1109/TMAG.2008.2001989
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a method for the numerical computation of 3-D sensitivity coefficients of a target object in magnetic induction tomography (MIT). The sensitivity coefficient at a point is defined as the dot product of electromagnetic fields produced by unit current flowing in the excitation and the detector coil. In this paper, the fields are governed by a set of boundary integral equations (BIEs). Numerical results demonstrate that the fields on the boundary and interior volume domain of the target can be accurately represented by radial basis functions (RBFs). The paper compares numerical solutions of the BIEs based on RBFs with analytical solutions and boundary element solutions.
引用
收藏
页码:2268 / 2276
页数:9
相关论文
共 50 条
  • [21] A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions
    Pouria Assari
    Mehdi Dehghan
    The European Physical Journal Plus, 132
  • [22] Parasitic Extraction of Interconnections in 3-D Packaging Using Mixed Potential Integral Equation with Global Basis Functions
    Han, Ki Jin
    Swaminathan, Madhavan
    APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 2451 - 2454
  • [23] An Integral Formulation for the Computation of 3-D Eddy Current Using Facet Elements
    Thanh-Trung Nguyen
    Meunier, Gerard
    Guichon, Jean-Michel
    Chadebec, Olivier
    Trung-Son Nguyen
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 549 - 552
  • [24] Radial boundary elements method, a new approach on using radial basis functions to solve partial differential equations, efficiently
    Hosseinzadeh, Hossein
    Sedaghatjoo, Zeinab
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 493
  • [25] Numerical analyses of the boundary effect of radial basis functions in 3D surface reconstruction
    Zhang, Xiangchao
    Jiang, Xiangqian
    NUMERICAL ALGORITHMS, 2008, 47 (04) : 327 - 339
  • [26] A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions
    Assari, Pouria
    Dehghan, Mehdi
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 424 - 444
  • [27] 3-D MAGNETOSTATIC FIELD CALCULATION USING THE MAGNETIC VECTOR POTENTIAL AND BOUNDARY INTEGRAL-EQUATION METHOD
    MORISUE, T
    FUKUMI, M
    IEEE TRANSACTIONS ON MAGNETICS, 1987, 23 (05) : 3311 - 3313
  • [28] 3D garment positioning using Hermite radial basis functions
    Abderrazzak Ait Mouhou
    Abderrahim Saaidi
    Majid Ben Yakhlef
    Khalid Abbad
    Virtual Reality, 2022, 26 : 295 - 322
  • [29] 3D garment positioning using Hermite radial basis functions
    Ait Mouhou, Abderrazzak
    Saaidi, Abderrahim
    Ben Yakhlef, Majid
    Abbad, Khalid
    VIRTUAL REALITY, 2022, 26 (01) : 295 - 322
  • [30] Computation of 2D Fourier transforms and diffraction integrals using Gaussian radial basis functions
    Martinez-Finkelshtein, A.
    Ramos-Lopez, D.
    Iskander, D. R.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 43 (03) : 424 - 448