Implicit Euler approximation of stochastic evolution equations with fractional Brownian motion

被引:18
|
作者
Kamrani, Minoo [1 ,2 ]
Jamshidi, Nahid [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Stochastic evolution equation; Fractional Brownian motion; Galerkin method; Implicit Euler scheme; DRIVEN;
D O I
10.1016/j.cnsns.2016.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work was intended as an attempt to motivate the approximation of quasi linear evolution equations driven by infinite-dimensional fractional Brownian motion with Hurst parameter H > 1/2. The spatial approximation method is based on Galerkin and the temporal approximation is based on implicit Euler scheme. An error bound and the convergence of the numerical method are given. The numerical results show usefulness and accuracy of the method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [41] Impulsive stochastic fractional differential equations driven by fractional Brownian motion
    Mahmoud Abouagwa
    Feifei Cheng
    Ji Li
    Advances in Difference Equations, 2020
  • [42] Riemann–Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion
    Min Yang
    Haibo Gu
    Journal of Inequalities and Applications, 2021
  • [43] Nonlocal fuzzy fractional stochastic evolution equations with fractional Brownian motion of order (1,2)
    Abuasbeh, Kinda
    Shafqat, Ramsha
    Niazi, Azmat Ullah Khan
    Awadalla, Muath
    AIMS MATHEMATICS, 2022, 7 (10): : 19344 - 19358
  • [44] Fuzzy stochastic differential equations driven by fractional Brownian motion
    Hossein Jafari
    Marek T. Malinowski
    M. J. Ebadi
    Advances in Difference Equations, 2021
  • [45] SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE WITH A FRACTIONAL BROWNIAN MOTION
    Duncan, T. E.
    Maslowski, B.
    Pasik-Duncan, B.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 40 (06) : 2286 - 2315
  • [46] Neutral stochastic differential equations driven by Brownian motion and fractional Brownian motion in a Hilbert space
    Liu, Weiguo
    Luo, Jiaowan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (1-2): : 235 - 253
  • [47] Fuzzy stochastic differential equations driven by fractional Brownian motion
    Jafari, Hossein
    Malinowski, Marek T.
    Ebadi, M. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [48] Ergodicity of stochastic differential equations driven by fractional Brownian motion
    Hairer, M
    ANNALS OF PROBABILITY, 2005, 33 (02): : 703 - 758
  • [49] RANDOM ATTRACTORS FOR STOCHASTIC EQUATIONS DRIVEN BY A FRACTIONAL BROWNIAN MOTION
    Garrido-Atienza, M. J.
    Maslowski, B.
    Schmalfuss, B.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09): : 2761 - 2782
  • [50] Backward Euler method for stochastic differential equations with non-Lipschitz coefficients driven by fractional Brownian motion
    Hao Zhou
    Yaozhong Hu
    Yanghui Liu
    BIT Numerical Mathematics, 2023, 63