Categorical data clustering: A correlation-based approach for unsupervised attribute weighting

被引:2
|
作者
Carbonera, Joel Luis [1 ]
Abel, Mara [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
关键词
clustering; subspace clustering; categorical data; attribute weighting; data mining; K-MEANS; ALGORITHM;
D O I
10.1109/ICTAI.2014.46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The interest in attribute weighting, in clustering tasks, have been increasing in the last years. However, few attempts have been made to apply automated attribute weighting to categorical data clustering. Most of the existing approaches computes the weights based on the frequency of the mode category or according to the average distance of data objects from the mode of a cluster. In this paper, we adopt a different approach, investigating how to use the correlation among categorical attributes for measuring their relevancies in clustering tasks. As a result, we propose a correlation-based attribute weighting approach for categorical attributes.
引用
收藏
页码:259 / 263
页数:5
相关论文
共 50 条
  • [31] A Subspace Clustering Algorithm of Categorical Data Using Multiple Attribute Weights
    Pang N.
    Zhang J.-F.
    Qin X.
    Zhang, Ji-Fu (jifuzh@sina.com), 2018, Science Press (44): : 517 - 532
  • [32] Combining attribute content and label information for categorical data ensemble clustering
    Yu, Liqin
    Cao, Fuyuan
    Zhao, Xingwang
    Yang, Xiaodan
    Liang, Jiye
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 381
  • [33] COIN: Correlation Index-Based Similarity Measure for Clustering Categorical Data
    Sowmiya, N.
    Gupta, N. Srinivasa
    Natarajan, Elango
    Valarmathi, B.
    Elamvazuthi, I.
    Parasuraman, S.
    Kit, Chun Ang
    Freitas, Lidio Inacio
    Abraham Gnanamuthu, Ezra Morris
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [34] COIN: Correlation Index-Based Similarity Measure for Clustering Categorical Data
    Sowmiya, N.
    Gupta, N.Srinivasa
    Natarajan, Elango
    Valarmathi, B.
    Elamvazuthi, I.
    Parasuraman, S.
    Kit, Chun Ang
    Freitas, Lídio Inácio
    Abraham Gnanamuthu, Ezra Morris
    Mathematical Problems in Engineering, 2022, 2022
  • [35] Rough Set Approach for Categorical Data Clustering
    Herawan, Tutut
    Yanto, Iwan Tri Riyadi
    Deris, Mustafa Mat
    DATABASE THEORY AND APPLICATION, 2009, 64 : 179 - 186
  • [36] Clustering Categorical Data Based on Representatives
    Aranganayagi, S.
    Thangavel, K.
    THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 599 - +
  • [37] Clustering Categorical Data:A Cluster Ensemble Approach
    何增友
    HighTechnologyLetters, 2003, (04) : 8 - 12
  • [38] A Link-Based Cluster Ensemble Approach for Categorical Data Clustering
    Iam-On, Natthakan
    Boongoen, Tossapon
    Garrett, Simon
    Price, Chris
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2012, 24 (03) : 413 - 425
  • [39] Clustering Data of Mixed Categorical and Numerical Type With Unsupervised Feature Learning
    Lam, Dao
    Wei, Mingzhen
    Wunsch, Donald
    IEEE ACCESS, 2015, 3 : 1605 - 1613
  • [40] Efficiency Based Categorical Data Clustering
    Kalaivani, K.
    Raghavendra, A. P. V.
    2012 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2012, : 550 - 553