On rigidity and scalar curvature of Einstein-type manifolds

被引:2
|
作者
Mirshafeazadeh, Mir Ahmad [1 ]
Bidabad, Behroz [2 ]
机构
[1] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
[2] Amirkabir Univ Technol, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
关键词
Einstein-type manifold; Yamabe quasi-soliton; Yamabe soliton; Einstein manifold; scalar curvature; GRADIENT; SOLITONS;
D O I
10.1142/S0219887818500731
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Here, the scalar curvature of an Einstein-type manifold or equivalently an almost Yamabe quasi-soliton is explicitly determined in terms of its soliton function and some rigidity theorems are obtained. Among the others its shown; if the soliton function is negative, then every compact conformal Yamabe quasi-soliton is isometric to the standard Euclidean sphere.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Rigidity of Einstein manifolds with positive scalar curvature
    Xu, Hong-wei
    Gu, Juan-ru
    MATHEMATISCHE ANNALEN, 2014, 358 (1-2) : 169 - 193
  • [2] Rigidity of Einstein manifolds with positive scalar curvature
    Hong-wei Xu
    Juan-ru Gu
    Mathematische Annalen, 2014, 358 : 169 - 193
  • [3] Local and global scalar curvature rigidity of Einstein manifolds
    Dahl, Mattias
    Kroncke, Klaus
    MATHEMATISCHE ANNALEN, 2024, 388 (01) : 453 - 510
  • [4] Local and global scalar curvature rigidity of Einstein manifolds
    Mattias Dahl
    Klaus Kröncke
    Mathematische Annalen, 2024, 388 : 453 - 510
  • [5] ON THE GEOMETRY OF GRADIENT EINSTEIN-TYPE MANIFOLDS
    Catino, Giovanni
    Mastrolia, Paolo
    Monticelli, Dario D.
    Rigoli, Marco
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 286 (01) : 39 - 67
  • [6] A note on gradient Einstein-type manifolds
    Vieira Gomes, Jose Nazareno
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 66 : 13 - 22
  • [7] On Einstein-type almost Kenmotsu manifolds
    Kumara, Huchchappa Aruna
    Praveena, Mundalamane Manjappa
    Naik, Devaraja Mallesha
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2023, 43 (03): : 141 - 147
  • [8] On the scalar curvature of Einstein manifolds
    Catanese, F
    LeBrun, C
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (06) : 843 - 854
  • [9] On Einstein-type contact metric manifolds
    Patra, Dhriti Sundar
    Ghosh, Amalendu
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 169
  • [10] Rigidity of Einstein manifolds of nonpositive curvature
    Leung, MC
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (02) : 181 - 192