Bayesian Demographic Accounts: Subnational Population Estimation Using Multiple Data Sources

被引:30
|
作者
Bryant, John R.
Graham, Patrick J.
机构
来源
BAYESIAN ANALYSIS | 2013年 / 8卷 / 03期
关键词
demography; official statistics; population estimation; hierarchical Bayesian model; MCMC; MORTALITY; DISTRIBUTIONS; IMMIGRATION; VARIANCE; MODELS; SIZE;
D O I
10.1214/13-BA820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Demographic estimates for small areas within a country have many uses. Subnational population estimation is, however, difficult, requiring the synthesis of multiple inconsistent datasets. Current methods have important limitations, including a heavy reliance on ad hoc adjustment and limited allowance for uncertainty. In this paper we demonstrate how subnational population estimation can be carried out within a formal Bayesian framework. The core of the framework is a demographic account, providing a complete description of the demographic system. Regularities within the demographic account are described by a system model. The relationship between the demographic account and the observable data is described by an observation model. Posterior simulation is carried out using Markov chain Monte Carlo methods. We illustrate the methods using data for six regions within New Zealand.
引用
收藏
页码:591 / 622
页数:32
相关论文
共 50 条
  • [41] Prevalence of opioid dependence in New South Wales, Australia, 2014-16: Indirect estimation from multiple data sources using a Bayesian approach
    Downing, Beatrice C.
    Hickman, Matthew
    Jones, Nicola R.
    Larney, Sarah
    Sweeting, Michael J.
    Xu, Yixin
    Farrell, Michael
    Degenhardt, Louisa
    Jones, Hayley E.
    ADDICTION, 2023, 118 (10) : 1994 - 2006
  • [42] Estimation of deer population dynamics using a bayesian state-space model with multiple abundance indices
    Iijima, Hayato
    Nagaike, Takuo
    Honda, Takeshi
    JOURNAL OF WILDLIFE MANAGEMENT, 2013, 77 (05): : 1038 - 1047
  • [43] Accounting for uncertainty due to data processing in virtual population analysis using Bayesian multiple imputation
    Carruthers, Thomas
    Kell, Laurence
    Palma, Carlos
    CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2018, 75 (06) : 883 - 896
  • [44] Bayesian inference for parameters estimation using experimental data
    Pepi, Chiara
    Gioffre, Massimiliano
    Grigoriu, Mircea
    PROBABILISTIC ENGINEERING MECHANICS, 2020, 60
  • [45] BAYESIAN SOUND FIELD ESTIMATION USING UNCERTAIN DATA
    Brunnstrom, Jesper
    Moller, Martin Bo
    Ostergaard, Jan
    Moonen, Marc
    2024 18TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT, IWAENC 2024, 2024, : 329 - 333
  • [46] Simultaneous estimation and testing of sources in multiple MEG data sets
    Bijma, F
    de Munck, JC
    Huizenga, HM
    Heethaar, RA
    Nehorai, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (09) : 3449 - 3460
  • [47] Estimation of multiple sound sources with data and model uncertainties using the EM and evidential EM algorithms
    Wang, Xun
    Quost, Benjamin
    Chazot, Jean-Daniel
    Antoni, Jerome
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 66-67 : 159 - 177
  • [48] Low Complexity DOA Estimation of Multiple Coherent Sources Using a Single Direct Data Snapshot
    Hussain, Ahmed A.
    Tayem, Nizar
    Soliman, Abdel-Hamid
    IEEE ACCESS, 2024, 12 : 2371 - 2388
  • [49] BAYESIAN ESTIMATION OF HISPANIC FERTILITY HAZARDS FROM SURVEY AND POPULATION DATA
    Rendall, Michael S.
    Handcock, Mark S.
    Jonsson, Stefan H.
    DEMOGRAPHY, 2009, 46 (01) : 65 - 83
  • [50] The Hidden Health and Economic Burden of Rotavirus Gastroenteritis in Malaysia An Estimation Using Multiple Data Sources
    Loganathan, Tharani
    Ng, Chiu-Wan
    Lee, Way-Seah
    Jit, Mark
    PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2016, 35 (06) : 601 - 606