Organic Solar Cells: Understanding the Role of Forster Resonance Energy Transfer

被引:106
|
作者
Feron, Krishna [1 ,2 ]
Belcher, Warwick J. [1 ]
Fell, Christopher J. [2 ]
Dastoor, Paul C. [1 ]
机构
[1] CSIRO Energy Technol, Newcastle, NSW 2304, Australia
[2] Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia
关键词
organic solar cells; photovoltaic; exciton; FRET; energy transfer; photoconversion mechanism; review; PPV/PORPHYRIN/PCBM HETEROJUNCTION DEVICES; EXCITON DIFFUSION LENGTH; CHARGE-TRANSFER STATES; MONTE-CARLO; THIN-FILMS; PHOTOCURRENT GENERATION; CONJUGATED POLYMERS; PHOTOVOLTAIC CELLS; TRANSFER DYNAMICS; ELECTRON-TRANSFER;
D O I
10.3390/ijms131217019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Forster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Forster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.
引用
收藏
页码:17019 / 17047
页数:29
相关论文
共 50 条
  • [41] Probing fluorescence resonance energy transfer and hole transfer in organic solar cells using a tandem structure
    Zhao, Zhenmin
    Chu, Shenglong
    Lv, Jie
    Chen, Qianqian
    Xiao, Zhengguo
    Lu, Shirong
    Kan, Zhipeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (33) : 11167 - 11174
  • [42] Extending spectrum response of squaraine-sensitized solar cell by Forster resonance energy transfer
    Li, Yajiao
    Zhang, Yipin
    Xu, Wenjiao
    Wang, Bin
    Zhang, Jingbo
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (07) : 2091 - 2098
  • [43] Forster resonance energy transfer (FRET) and applications thereof
    Kaur, Amrita
    Kaur, Pardeep
    Ahuja, Sahil
    ANALYTICAL METHODS, 2020, 12 (46) : 5532 - 5550
  • [44] Oligomerization of Sticholysins from Forster Resonance Energy Transfer
    Palacios-Ortega, Juan
    Rivera-de-Torre, Esperanza
    Garcia-Linares, Sara
    Gavilanes, Jose G.
    Martinez-del-Pozo, Alvaro
    Slotte, J. Peter
    BIOCHEMISTRY, 2021, 60 (04) : 314 - 323
  • [45] Modification of Forster Resonance Energy Transfer Efficiency at Interfaces
    Enderlein, Joerg
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (11): : 15227 - 15240
  • [46] How to avoid bleeding in Forster resonance energy transfer
    Nagy, Peter
    Szoellosi, Janos
    CYTOMETRY PART A, 2012, 81A (02) : 108 - 109
  • [47] Forster resonance energy transfer involving the triplet state
    Bahadur, Sk
    Hirata, Shuzo
    CHEMICAL COMMUNICATIONS, 2023, 59 (44) : 6643 - 6659
  • [48] Forster resonance energy transfer and kinesin motor proteins
    Prevo, Bram
    Peterman, Erwin J. G.
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (04) : 1144 - 1155
  • [49] Analyzing Forster Resonance Energy Transfer with Fluctuation Algorithms
    Felekyan, Suren
    Sanabria, Hugo
    Kalinin, Stanislav
    Kuehnemuth, Ralf
    Seidel, Claus A. M.
    FLUORESCENCE FLUCTUATION SPECTROSCOPY (FFS), PT B, 2013, 519 : 39 - 85
  • [50] Forster Resonance Energy Transfer inside Hyperbolic Metamaterials
    Roth, Diane J.
    Nasir, Mazhar E.
    Ginzburg, Pavel
    Wang, Pan
    Le Marois, Alix
    Suhling, Klaus
    Richards, David
    Zayats, Anatoly V.
    ACS PHOTONICS, 2018, 5 (11): : 4594 - 4603