Relation Extraction with Temporal Reasoning Based on Memory Augmented Distant Supervision

被引:0
|
作者
Yan, Jianhao [1 ]
He, Lin [1 ]
Huang, Ruqin [2 ]
Li, Jian [3 ]
Liu, Ying [1 ]
机构
[1] Tsinghua Univ, Inst Network Sci & Cyberspace, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
[3] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Distant supervision (DS) is an important paradigm for automatically extracting relations. It utilizes existing knowledge base to collect examples for the relation we intend to extract, and then uses these examples to automatically generate the training data. However, the examples collected can be very noisy, and pose significant challenge for obtaining high quality labels. Previous work has made remarkable progress in predicting the relation from distant supervision, but typically ignores the temporal relations among those supervising instances. This paper formulates the problem of relation extraction with temporal reasoning and proposes a solution to predict whether two given entities participate in a relation at a given time spot. For this purpose, we construct a dataset called WIKITIME1 which additionally includes the valid period of a certain relation of two entities in the knowledge base. We propose a novel neural model to incorporate both the temporal information encoding and sequential reasoning. The experimental results show that, compared with the best of existing models, our model achieves better performance in both WIKITIME dataset and the well-studied NYT-10 dataset.
引用
收藏
页码:1019 / 1030
页数:12
相关论文
共 50 条
  • [22] Distant Supervision for Relation Extraction via Sparse Representation
    Zeng, Daojian
    Lai, Siwei
    Wang, Xuepeng
    Liu, Kang
    Zhao, Jun
    Lv, Xueqiang
    CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA, CCL 2014, 2014, 8801 : 151 - 162
  • [23] Adversarial Discriminative Denoising for Distant Supervision Relation Extraction
    Liu, Bing
    Gao, Huan
    Qi, Guilin
    Duan, Shangfu
    Wu, Tianxing
    Wang, Meng
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2019, 11448 : 282 - 286
  • [24] Distant Supervision for Relation Extraction via Group Selection
    Xiang, Yang
    Wang, Xiaolong
    Zhang, Yaoyun
    Qin, Yang
    Fan, Shixi
    NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 250 - 258
  • [25] Relation Extraction from the Web Using Distant Supervision
    Augenstein, Isabelle
    Maynard, Diana
    Ciravegna, Fabio
    KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT, EKAW 2014, 2014, 8876 : 26 - 41
  • [26] Distant supervision for relation extraction with hierarchical selective attention
    Zhou, Peng
    Xu, Jiaming
    Qi, Zhenyu
    Bao, Hongyun
    Chen, Zhineng
    Xu, Bo
    NEURAL NETWORKS, 2018, 108 : 240 - 247
  • [27] Combining Distant and Direct Supervision for Neural Relation Extraction
    Beltagy, Iz
    Lo, Kyle
    Ammar, Waleed
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 1858 - 1867
  • [28] Improving Distant Supervision of Relation Extraction with Unsupervised Methods
    Peng, Min
    Huang, Jimin
    Sun, Zhaoyu
    Wang, Shizhong
    Wang, Hua
    Zhuo, Guangping
    Tian, Gang
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2016, PT I, 2016, 10041 : 561 - 568
  • [29] A Hybrid Graph Model for Distant Supervision Relation Extraction
    Duan, Shangfu
    Gao, Huan
    Liu, Bing
    Qi, Guilin
    SEMANTIC WEB, ESWC 2019, 2019, 11503 : 36 - 51
  • [30] An autoencoder-based representation for noise reduction in distant supervision of relation extraction
    Garcia-Mendoza, Juan-Luis
    Villasenor-Pineda, Luis
    Orihuela-Espina, Felipe
    Bustio-Martinez, Lazaro
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (05) : 4523 - 4529