Data visualization and dimensionality reduction using kernel maps with a reference point

被引:21
|
作者
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, ESAT SCD SISTA, B-3001 Heverlee, Belgium
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2008年 / 19卷 / 09期
关键词
constrained optimization; data visualization; dimensionality reduction; feature map; kernel methods; least squares support vector machines (LS-SVMs); positive-definite kernel; validation;
D O I
10.1109/TNN.2008.2000807
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new kernel-based method for data visualization and dimensionality reduction is proposed. A reference point is considered corresponding to additional constraints taken in the problem formulation. In contrast with the class of kernel eigenmap methods, the solution (coordinates in the low-dimensional space) is characterized by a linear system instead of an eigenvalue problem. The kernel maps with a reference point are generated from a least squares support vector machine (LS-SVM) core part that is extended with an additional regularization term for preserving local mutual distances together with reference point constraints. The kernel maps possess primal and dual model representations and provide out-of-sample extensions, e.g., for validation-based tuning. The method is illustrated on toy problems and real-life data sets.
引用
收藏
页码:1501 / 1517
页数:17
相关论文
共 50 条
  • [21] A virtual reality data visualization tool for dimensionality reduction methods
    Juan C. Morales-Vega
    Laura Raya
    Manuel Rubio-Sánchez
    Alberto Sanchez
    Virtual Reality, 2024, 28
  • [22] Robust dimensionality reduction for data visualization with deep neural networks
    Becker, Martin
    Lippel, Jens
    Stuhlsatz, Andre
    Zielke, Thomas
    GRAPHICAL MODELS, 2020, 108
  • [23] Information retrieval perspective to nonlinear dimensionality reduction for data visualization
    Venna, Jarkko
    Kaski, Samuel
    Aidos, Helena
    Nybo, Kristian
    Peltonen, Jaakko
    Journal of Machine Learning Research, 2010, 11 : 451 - 490
  • [24] Geometric MDS Performance for Large Data Dimensionality Reduction and Visualization
    Dzemyda, Gintautas
    Sabaliauskas, Martynas
    Medvedev, Viktor
    INFORMATICA, 2022, 33 (02) : 299 - 320
  • [25] Feature Dimensionality Reduction for Visualization and Clustering on Learning Process Data
    Supianto, Ahmad Afif
    Christyawan, Tomi Yahya
    Hafis, Muhammad
    Hayashi, Yusuke
    Hirashima, Tsukasa
    Hasanah, Nur
    PROCEEDINGS OF 2019 4TH INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2019), 2019, : 84 - 89
  • [26] A New Dimensionality Reduction Approach Applied to the Big Data Visualization
    Lamrini, Mimoun
    Tribak, Hicham
    Chkouri, Mohamed Yassin
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 2, 2022, 1418 : 312 - 318
  • [27] Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization
    Venna, Jarkko
    Peltonen, Jaakko
    Nybo, Kristian
    Aidos, Helena
    Kaski, Samuel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 451 - 490
  • [28] DIMENSIONALITY REDUCTION FOR DATA VISUALIZATION AND EXPLORATORY ANALYSIS OF CERAMIC ASSEMBLAGES
    Cardarelli, Lorenzo
    Lapadula, Annalisa
    ARCHEOLOGIA E CALCOLATORI, 2022, 33 (02): : 33 - 52
  • [29] A virtual reality data visualization tool for dimensionality reduction methods
    Morales-Vega, Juan C.
    Raya, Laura
    Rubio-Sanchez, Manuel
    Sanchez, Alberto
    VIRTUAL REALITY, 2024, 28 (01)
  • [30] A visualization metric for dimensionality reduction
    Tsai, Flora S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (02) : 1747 - 1752