Data visualization and dimensionality reduction using kernel maps with a reference point

被引:21
|
作者
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, ESAT SCD SISTA, B-3001 Heverlee, Belgium
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2008年 / 19卷 / 09期
关键词
constrained optimization; data visualization; dimensionality reduction; feature map; kernel methods; least squares support vector machines (LS-SVMs); positive-definite kernel; validation;
D O I
10.1109/TNN.2008.2000807
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new kernel-based method for data visualization and dimensionality reduction is proposed. A reference point is considered corresponding to additional constraints taken in the problem formulation. In contrast with the class of kernel eigenmap methods, the solution (coordinates in the low-dimensional space) is characterized by a linear system instead of an eigenvalue problem. The kernel maps with a reference point are generated from a least squares support vector machine (LS-SVM) core part that is extended with an additional regularization term for preserving local mutual distances together with reference point constraints. The kernel maps possess primal and dual model representations and provide out-of-sample extensions, e.g., for validation-based tuning. The method is illustrated on toy problems and real-life data sets.
引用
收藏
页码:1501 / 1517
页数:17
相关论文
共 50 条
  • [1] Diffusion Maps for dimensionality reduction and visualization of meteorological data
    Fernandez, Angela
    Gonzalez, Ana M.
    Diaz, Julia
    Dorronsoro, Jose R.
    NEUROCOMPUTING, 2015, 163 : 25 - 37
  • [2] Dimensionality Reduction for Data Visualization
    Kaski, Samuel
    Peltonen, Jaakko
    IEEE SIGNAL PROCESSING MAGAZINE, 2011, 28 (02) : 100 - 104
  • [3] Data visualization by nonlinear dimensionality reduction
    Gisbrecht, Andrej
    Hammer, Barbara
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 5 (02) : 51 - 73
  • [4] A nonlinear method for dimensionality reduction of data using reference nodes
    E. V. Myasnikov
    Pattern Recognition and Image Analysis, 2012, 22 (2) : 337 - 345
  • [5] A Dimensionality Reduction Method for Data Visualization using Particle Swarm Optimization
    Petrantonakis, Panagiotis C.
    Kompatsiaris, Ioannis
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE (IJCCI), 2020, : 131 - 138
  • [6] Asymmetric Isomap for Dimensionality Reduction and Data Visualization
    Olszewski, Dominik
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT I, 2024, 15016 : 102 - 115
  • [7] Nonlinear Dimensionality Reduction and Data Visualization:A Review
    Hujun Yin School of Electrical and Electronic Engineering
    International Journal of Automation & Computing, 2007, (03) : 294 - 303
  • [8] Improving Dimensionality Reduction Projections for Data Visualization
    Rafieian, Bardia
    Hermosilla, Pedro
    Vazquez, Pere-Pau
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [9] Nonlinear dimensionality reduction and data visualization: A review
    Yin H.
    International Journal of Automation and Computing, 2007, 4 (3) : 294 - 303
  • [10] Deep kernel dimensionality reduction for scalable data integration
    Sokolovska, Nataliya
    Clement, Karine
    Zucker, Jean-Daniel
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 74 : 121 - 132