Screening, Expression, and Identification of Nanobody against SARS-CoV-2 Spike Protein

被引:6
|
作者
Su, Qianling [1 ]
Shi, Wei [1 ]
Huang, Xianing [1 ]
Wan, Yakun [2 ]
Li, Guanghui [2 ]
Xing, Bengang [3 ]
Xu, Zhi Ping [4 ]
Liu, Hongbo [5 ]
Hammock, Bruce D. [6 ]
Yang, Xiaomei [1 ]
Yin, Shihua [1 ]
Lu, Xiaoling [1 ]
机构
[1] Guangxi Med Univ, Guangxi Nanobody Engn Res Ctr, Guangxi Key Lab Nanobody Res,Clin Med Coll 2, Hosp Stomatol,Coll Stomatol,Lab Anim Ctr,Sch Basi, Nanning 530021, Peoples R China
[2] Shanghai Novamab Biopharmaceut Co Ltd, Shanghai 201203, Peoples R China
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637551, Singapore
[4] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
[5] Guilin Med Univ, Dept Lab Med, Affiliated Hosp 2, Guilin 541000, Peoples R China
[6] Univ Calif Davis, UCD Comprehens Canc Ctr, Dept Entomol & Nematol, Davis, CA 95616 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SARS-CoV-2; spike protein; nanobody; single-domain antibody; phage display; ANTIBODIES; NEUTRALIZATION;
D O I
10.3390/cells11213355
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an infectious disease that has become a serious burden on global public health. This study screened and yielded specific nanobodies (Nbs) against SARS-CoV-2 spike protein receptor binding domain (RBD), following testing its basic characteristics. A nanobody phage library was established by immunizing a camel with RBD protein. After three rounds of panning, the positive colonies were screened by enzyme-linked immunosorbent assay (ELISA). By sequencing, four different sequences of nanobody gene fragments were selected. The four nanobody fusion proteins were expressed and purified, respectively. The specificity and affinity of the four nanobodies were identified by ELISA. Our results showed that an immune phage display library against SARS-CoV-2 has been successfully constructed with a library capacity of which was 4.7 x 10(8) CFU. The four purified nanobodies showed specific high-affinity binding SARS-CoV-2 S-RBD. Among these, the antigen binding affinity of Nb61 was more comparable to that of commercial rabbit anti-SARS-CoV-2 S-RBD antibodies. In sum, our study has obtained four nanobody strains against SARS-CoV-2 S-RBD with significant affinity and specificity, therefore laying an essential foundation for further research as well as the applications of diagnostic and therapeutic tools of SARS-CoV-2.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Development of a Series of Neutralizing Nanobodies against SARS-CoV-2 Spike Protein
    Zhuchkov, V. A.
    Ivanov, S. V.
    Kravchenko, J. E.
    Chumakov, S. P.
    MOLECULAR BIOLOGY, 2023, 57 (03) : 502 - 511
  • [22] Bioinformatic Screening of Compounds from Iranian Lamiaceae Family Members against SARS-CoV-2 Spike Protein
    Alibakhshi, Abbas
    Gharibi, Shima
    Ahangarzadeh, Shahrzad
    Yarian, Fatemeh
    LETTERS IN DRUG DESIGN & DISCOVERY, 2023, 20 (06) : 684 - 698
  • [23] Virtual screening of curcumin and its analogs against the spike surface glycoprotein of SARS-CoV-2 and SARS-CoV
    Patel, Ashish
    Rajendran, Malathi
    Shah, Ashish
    Patel, Harnisha
    Pakala, Suresh B.
    Karyala, Prashanthi
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (11): : 5138 - 5146
  • [24] Expression and characterization of SARS-CoV-2 spike proteins
    Schaub, Jeffrey M.
    Chou, Chia-Wei
    Kuo, Hung-Che
    Javanmardi, Kamyab
    Hsieh, Ching-Lin
    Goldsmith, Jory
    DiVenere, Andrea M.
    Le, Kevin C.
    Wrapp, Daniel
    Byrne, Patrick O.
    Hjorth, Christy K.
    Johnson, Nicole, V
    Ludes-Meyers, John
    Nguyen, Annalee W.
    Wang, Nianshuang
    Lavinder, Jason J.
    Ippolito, Gregory C.
    Maynard, Jennifer A.
    McLellan, Jason S.
    Finkelstein, Ilya J.
    NATURE PROTOCOLS, 2021, 16 (11) : 5339 - 5356
  • [25] Identification of a Pentasaccharide Lead Compound with High Affinity to the SARS-CoV-2 Spike Protein via In Silico Screening
    Li, Binjie
    Zhang, Tianji
    Cao, Hui
    Ferro, Vito
    Li, Jinping
    Yu, Mingjia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [26] Expression and characterization of SARS-CoV-2 spike proteins
    Jeffrey M. Schaub
    Chia-Wei Chou
    Hung-Che Kuo
    Kamyab Javanmardi
    Ching-Lin Hsieh
    Jory Goldsmith
    Andrea M. DiVenere
    Kevin C. Le
    Daniel Wrapp
    Patrick O. Byrne
    Christy K. Hjorth
    Nicole V. Johnson
    John Ludes-Meyers
    Annalee W. Nguyen
    Nianshuang Wang
    Jason J. Lavinder
    Gregory C. Ippolito
    Jennifer A. Maynard
    Jason S. McLellan
    Ilya J. Finkelstein
    Nature Protocols, 2021, 16 : 5339 - 5356
  • [27] Cellular signalling by SARS-CoV-2 spike protein
    Gracie, Nicholas P.
    Lai, Lachlan Y. S.
    Newsome, Timothy P.
    MICROBIOLOGY AUSTRALIA, 2024, 45 (01) : 13 - 17
  • [28] The Elusive Coreceptors for the SARS-CoV-2 Spike Protein
    Berkowitz, Reed L. L.
    Ostrov, David A. A.
    VIRUSES-BASEL, 2023, 15 (01):
  • [29] SARS-CoV-2 Spike Protein Interaction Space
    Lungu, Claudiu N.
    Putz, Mihai V.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (15)
  • [30] Proteolytic activation of SARS-CoV-2 spike protein
    Takeda, Makoto
    MICROBIOLOGY AND IMMUNOLOGY, 2022, 66 (01) : 15 - 23